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Abstract

The proteostasis is critical for the maintenance of vital biological processes, disruption resulting
from protein misfolding or impaired proteolytic clearance mechanisms underlies the pathogenesis
of a spectrum of diseases. Traditional small-molecule targeted drugs exert their effects through
“competitive binding”, and issues such as difficult-to-drug targets and drug resistance have restricted
their development and application. Targeted protein degradation technology, through an “event-
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driven” strategy, utilizes endogenous protein degradation pathways to eliminate pathogenic pro-
teins, demonstrating great potential in the field of new drug development. Hydrophobic tag protein
degraders, as bifunctional molecules, possess three functional regions: target protein ligand, linker
chain, and hydrophobic group. They do not rely on specific ligand binding with ubiquitin ligases and
achieve targeted degradation by physically and chemically driven protein surface modification, hi-
jacking the natural protein quality control system within cells. This article reviews the mechanism
of action and structural types of hydrophobic tag protein degraders, providing a research founda-
tion for the development of novel targeted protein degraders.
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1. 51§

ARSI FE A E, HARA N B8-S OB T IR 2 FLsl RS g . & H
BT S HUERRTEBRLER A BRAGI, H 2 SRR SAEER « UL 4 I R BEALRE 1 firh R 45
2RI, AT NS A i BEass OB 1] [2] ARG/ T4 rla s S 5 8 A s e AL s &
MR IEAHIVER - 2R, H o K251k, AREVEH T HERZREARSE 0/, A8 AT o3 53— Mok
M ER A B AR AR ——#E 7] 25 (1 [ /% (Targeted Protein Degradation, TPD)H; R .

B 2R BRI AL “ FARIRE) 7 SRmG, XN T AR G o S R R R R R FE AR S PR AL AT
()« ALIREN " SR, AN T B (R SRR ) BORS B VR R AT A, ZE (A7) & B ) BRSO B 1 PR P i s
S 2t R R A R ARTE BREUR B (3] [4]. IEHEORUL, AN B S B 3 2 AR 2R
- & [ M4 1% 2 (Ubiquitin-Proteasome System, UPS). HM: - ¥ HF {41812 (Autophagy-Lysosomal Pathway,
ALP). PRI nVAVER R AR, DR GERULDIRE M IR H 8 i 32 2l it UPS IR M 1
M. BrrSfELE, LU DhReskfAEd & A A B ALP ISR FEAR(5]-(7].

HEl, 2T TPD iR A K T — RV HBEMHAR, AH6 & A KL 1] ik 5 74 (Proteolysis Targeting
Chimeras, PROTACs). 77T K+ Bi/K#525(Hydrophobic Tags, HyTs). HW/IMELR e A B H#E
AL TR ) R A AR SE[8]-[12]. #RTM, XF T TPD HiARH K JRELHY) PROTACs HiARMIWF L, fEid 2
TRENCIHK THE . PROTACs & MXIhEED T, HELEARA. ERFE(linker). B3 12 FIE KN
FCAARLH R, ReW% 40 5% H 5 B H (Protein of Interest, POI)Y E3 EHME, MZGEIIZ &K - INHEARIEAE SN
POI (R 1), BHERI, R PROTACs ML TG/ FHHIRIFE Y 2 7 R I L, (Hl T
HAER > EROK,  FIRFIH B S 2580 71 S R A A R & 13

Ty Fl TPD BER——F T B /K bR 25 i B8 1m] 25 1 AR, At Fee B e JHCAE B 800 2 13 7 ThI ) KT
77. HyTs FIFEAEA—FXINRE> T, A5 PROTACs A =ANTIREX S, RPSLER HECiAR. IEHEE.
Bi/KEE R, 24 HyTs B KFR% 5 BABK B HFRE RS, ZE AR RTS8 EH,
I YRR T PR AR LTS BR14] [15]. HyTs I8 EA0 5 0K S0 (1) 8 R IS, ARRGREE I B3 &8
B, RPN RIAE H R =32 ) R Si(protein quality control, PQC)SZINHE ] PR . AR HyTs K
3R DIRERE S A AT A, HE B AT TSt AR IR IR L9 0 1 B I PR AR R
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Figure 1. The mechanism of PROTACs
[ 1. PROTACs HO{EFAHLHI

2. HRkiREEREE B R R ER LS

R HyTs BARIE RN A, BErotailh, FIH HyT B EAES, FEESZ R -
HABAIRGE. AW - EEHAR R SRS EO®RA. MIX =500, 1F 9 ) B & O ) B 2R,
NAHE S ECR(E 2).

2.1. ZF - EEHEEE

2 & - AWK R 48 (Ubiquitin-Proteasome System, UPS)/& & [ i (& i 3= Bk 12, 2 541N 80%
EHRMEESE. 5%, El BUSMRISZ 2001, BEHHLER R B2 SRR m ki b, b
Ja B3 &MY B2 &5z RiERSIHnEAR b, IR E2, WM RARE Mz #EH . &
2, X FALI R BT R € IR RN T 45 5, ETA O i R IR R IR [ 16] . /K bR A5 3E
HEAE RS NEED, BREEW. S E VKRR HyTs 5 Hin R A4 GR, Bk E H
MIGRAEARA, FTHE AR A IARAS, AT v R S & e, MmN IR T
B HEAE, RAETEARARREHREOHTIER.

2.2. B - REERE

BEGARAAAE T EAZ AN I s E FDIR A 2% . F W - VBB AAI8 /2 (Autophagy-Lysosomal Pathway,
ALP) AN R A B 2 42, 8. 2 EA PR ESEAT R F R, WRIEEE T AR,
S NE B FE AR R AR =R R 17] ANREEERA SR EZ R, SR A FIRR
fEE B . B A BCRERENZ R - HEABHA REMAIN, HyT nli@id K63 8z 2, K3
HWE - Wh AR PR B E . AR, EAMAEHE, HyT #SNEAEwRSHr R 2
B - WwlekiEe, MAsRTeEEAL L, &K - RARREA L CAREER, g0t £z £l
BB, RN BWRAATTIRTE R, BEdEa B R - WA i H AR E (18] [19].
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23. RITBRERARER

P 19X 2 S A )R B~ IR 2R 8 B e R i T i LA S ) = 4E DR Sy, 4
LML ES, EEERNE M. NS E b A8 E mEAE20]. 2RI, Bg Ca® 3, B¢
FFR A BN iz fan B 05 A 2 518 P 5 P8 #(Endoplasmic Reticulum Stress, ERS), BIR#T8E & A R M
(Unfolded Protein Response, UPR) [21] [22].

IR R F O RNA RN BT (PERK) . WUEE R KIS 1o (IRE1o) FIEAL SR IK - 6 (ATF6) /Y
T, REFELEERABIP)HIETI23]. £ANTIBECT, ABRMER S NERES G ES LR, B %
PESE IR I BERR AL TR AT A A0 BUAZRE AR TR 200 FROBERR AL AT, et b R 22 H sk 1 ot

& H[24]
»  UPS Pathway
»  Autophagy Pathway
—>  UPR Pathway
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/ HyT tag
m.tlaf\ 7
~ ch
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4 /
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Figure 2. Mechanism of action of hydrophobic tag targeting protein degraders
B 2. BRKARZHEE)E B REMETIAER LS

3. FKIREEE R FEETINHRITR

WA, BT S R AP 22 AR AT M S AU ) Z A 25 5B by, TS A DB IE I NS RIEE. FK
Frdfi. 2~ Boc KRR /K3 B THE M & A BRI iR 7o G 1, (g WK 3), HUS 7TRER
L i
3.1. BRULED
3.1.1. &Rk

SN — M EA RGN &Y, MBS iRt R B R BE . SERJIFEY)
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FHBNE . VRN RRI BRI B2 —, SRIGEE 2 B a7 et s k48 T mZAER, JUHAE
TR R PR 2R AT M SR A A% A2 I [25] . IR, FLAE R 5 B AR AT B S T R
FitRe. AR EZH2 SEEEMSHIR C24 S&RIbtER:, R —FBi EZH2 8 Rk
HY 1 (MS1943). SEERAE R, WEY 1 R A R4 N FERIE R EZH2, FRiEFMEH R IEK
i EZH2 (1) =B PEFLARE(TNBO) AN, RIS IE 5 A TC I B i 1k o AR AP B AT MR B3, & NI i)
L RIRERAS T B R [26] [27]. 2022 4, BFFEN G RINA BT T80 1) B At 5 S 1 A% B 1 1) P A
FILEYD 2 (HyT-3) %50 T R17E PROTACs [#f#7) SNIPERs [FFERt -, @il B3 BoiR % Hh 4Nkt
HTmfF 2. 5 SNIPERs AHEL, & 2 BAHR o FRET /N, EMBEVETELE, fefe A 8udid bk,
N SR AR TT SR AL T R (28] UBAN, A EHIHR AR T R NI AR ILA, X NIk bR iC Y LE
R FNE R TR N, HT R SRR, 2023 4, SR AIFR 7AW 3 (D4), H
GERI AL S A NG E . 2R DLZS 45 R AL SE(ALS) 1 SRl A A, A &9 3 B T SUR i E A
TDP-43 [REfR, FLREARECR 2RI . ERNIGER LS, & PET BA XM eE s et
RO I I BRI, VLR 40 N 2R A ARE 1R 7 B A T T IR SR [29]

Table 1. Classification and functions of hydrophobic label-targeted protein degraders
= 1. BUKEREEEE R AR 2 L R TEE

B 7K Ik 4] WE 1R FIAE AT YEFHLHI
1 (MS1943) EZH2 UPR
ENHIBE
2 (HyT-3) mHTT UPS
M4 NI 3 (D4) TDP-43 UPS
4 Halotag2 UPS
R
5 (MIC) BSA UPS
‘ 6 (HyT-9) ALK UPS
R UK I
7 (HyT-13) EZH2 UPS
DEZN e R 8 (RA3) ERa UPS
Vi) 9 (HyT3a) PARP UPR
4 10 (M9-MTX-pDHFR:18c & &) UGGT UPR
11 (EA-BocsArg) GST-a UPS
Boc3Arg 12 (Fur-BocsArg) GST-a UPR
13 (TMP-BocsArg) eDHFR UPS
ERR A 14 EGFR UPS
3.1.2. BRAliGE

55 bR, BB — Fo g /K P B SR Ak B 470t AE B 5T P AR A SR B HE KT 77 - AR Hansch-
Fujita Bi/K S50, BRIBE B K P (e > 4. 20000 T NI (r = 3.64) [30]. A 503 180 1K W bt b 25 125 46 g [
PERRINGE, AT EY 4, FRIEHXT Halo Tag Ml A & AW ERCE S TG SR GEbs i) . (Rt
fih b, AATIE A B T LAY 5 (MIC), TEANMESERH, (LAY S 5510 BSA FEMEFIFE 280 7 E Ao,
B PUESE TR bE A B 1 0T B A b A R3]

gr b, SNIEEAERIN bR B K IR ], R 0 B AR A VR T T S R I BRI S g . Bk
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K, Nl FE S R R B YE R AR AL, 8 22 o 2R B A0 3 PO B AR AR R M A 5
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H
o N
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; o/\,ﬁoiy\o KGSGS|—|EDLIIKGISV|—{GRKKRRQRRR|
S
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Figure 3. The chemical structure of hydrophobic label-targeted protein degraders
[E 3. BRKARZEEE a1 E MR L 254

3.2. L EY

3.2.1. KR

B UK I A2 — b B A O FR R FR M M BRI B AR e, 2 H A R/ FE I BK bR AE, R E
F ISR AT R K R I B R O 1, XA L o 2 D ) a1 2R e i R T41[32] [33]. 3T
SRR, B UK I (R I ) 2 o AR AT S L L T R IR B . BRI, FRVK I S AR K B A AR L
TERE MR AR . BB ) F e A AR, AR BT R R E R . AR M
IR BB PR (A LK) A2 22 Al 1 IR R B ARYE Y7 S £ [34] 0 B F0 N 53 4 )8 P bk LR R 4 1) 77 3SR B e 5
AR B bR 2 T HE, IR H B B UK s i K R BRI A  6 (Hy T-9), & B HE X 7] 745 14 4k 2L e ik g 2
HEA RIFIBEMAERCR[35]. thah, BT RKA & EZH2 FMEFIAEY) 7 (HyT-13), I X
EZH2 & H = S S 7] B RE T o R ANRINLEIET i8R, BRUKR G S — g RS a iz R - &
IR R KRR, I EAEX MRS E PR TEE T 70 Hsp70)WS 5. #2510 HTR M, BFKA G
BEE (2 (5 5 7 2R (1 R AR5 AN Fase , EMTIR 5| Hsp70 RTSKR RS, S 245 Bh &R (A B 42K B AR R 153 B A -
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TR B AL D B 1 SR P AR BOR TR 10T AT S, (RN D B A ] B A 25 D K A B 1 IR sk (i BRAE
HEAi

3.2.2.D MY EESR

5 H 2 (Artemisinin) & M HE16 T F I — R0 20 F RS>, A2 0TSRRI 24 M S R B 25 2 —([36]
BB RO AT NS N, BRI e, DARARIER ARG . R EUERH, BRAEWR
MIBKbRES, RBLH B AB K bR 2 5 SOt B AR A . BEC A SUBELY D A s S R 5 RIS 5%
G T —RIMEEY), TR R 1 e MR R 2K o BIEIEILEY) 8 (RA3), EWEWIREE AT
MER R 24K o KV, HEA NI B KRR RRE . BLAh, ARSMR N 25 RAIIGIE T &) 8 2%
B R 2 A o (A 2K . IR, B AT LA 2544 CDK6 i HDAC /K, X3 B LA it
Wt B ORI JI[37].

33. WEFRFUED

331. %

2j & — PRI P TR G, DB ) S5 MR e 1, I 299 R R B ZRE 25440 [38] [39]
RIRT BRI S AT 1 (PARPL) & NMA N —FHEZEY, AR EE R0 1055 DNA. BIAERY,
SRR R RRAZ A R A 1 IMRIATT DME RS A T2[40]. 2020 4, BFFCN OB T o K bR 25 1)
I 85 [ B AR BN T RIS R R AW 1 (IR, Iia)T =Bt . @A R 5K
WS WR M JEAHIE, BRI T ER B A 9 (HyT3a)REW A 305 T R MR iR &
1 WIBEMR[41]. IFH, AHEET FHSNIBEIARRE, A 25 1F i K bs 2 A5 ¥ 1) & 5t e 7 R I 1 S v
IR, XRPGIEN— PP B K bR REE 8 o R A b B R R AR LI AT e 2 i s iR 4
BNEAN, FRET BREZEREG | jov A Rein, #imsEs FIEEEde & - Eank
RGN AT AR . IXT4h Stk — AR SE 1 2 ik AR A 7K b 25 B 11 o At e 10 v 28k
3.3.2. Bt

EESE DY R AR G T R 22 24 05 0, LR S M A L A v R BURE IR 2 SR BT R [42] [43] 6 BEAE,
PRI B 7K A I A B AR R B /K AR BB ) o A A EE RS I/ eDHFR S B K ARSS, PR T
pDHFR:18c. FTfRHILEY 10 M9-MTX-pDHFR:18c &Y, &l 4) %t H B 0H-1 -0 2 1 EFlE 4 72 B (1) 5 A
JIRENRSE[44]. ZMARY, AR NBUKARSE W] ARG 58 2 1 07 5 8 DX S R gk v, AN T ASCADUE 8 4 28 1)
HE, X ABKARERARAE 8 E 0T R B S St TR i .

é@? R52
[
C85A
/

/

N\
\ D87
C152S  E120

10(M9-MTX-pDHFR:18cE &41)

Figure 4. Structural schematic diagram of the M9-MTX-pDHFR:18c complex
& 4. M9-MTX-pDHFR:18¢c £ & #MIREHREE
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3.4. SEBRUESY

B 0 PRI RR R 1 B G A Ao 26 W] 52 LB AR i i o 2 SRR AR AL R 4%, B N oI [45] [46]. WFIT
R, MEAT N o XIS R ERR . IR ECE D R SR e R, 2 B3 s FAR U
fasEtt, HEf AR SR RE47]. TR, B RS 5 N R RS S5
JEH K S #2F2 B (GST-m) FHRF e 1k B At o A AT 1AL T G 1 1 A A U T S8R R BE B 54 11 (EA-BocsArg),
RGP BB LB, HEIEI T2 AEWTE HeLa QR 35k R b B2 BB B H L S #5
B KT, X — ISR 2L 1T Rl I A L BR ORI MR L 2 5 P FE (48] b4h, X Fi A
FAIEH BocsArg SA3IEH K S B #% B (0 JLAN 40k AR AR IR FE R s 717 4E 7 (Fur) « eDHFR [ 3EAN 418611 751) FR 48
HE(TMP)ERE, I 7THLEY) 12 (Fur-BocsArg) &%) 13 (TMP-BocsArg). HLHIWT 75 £ 8, BocsArg
A EES 208 EEARAL S, KEE AT SRR KO TR, Zd M T R AOBE
12, HAr 1B =A Boe R 3k B AR S0 T 4ERF B ffd v BA O E F[49] [50]0 1X — B 2R IR
TG E AR RRIR, AFFRE B A & B TR TR T O e R

3.5. EEXUEY

ERAHED T —MFA TR, BRI HRA AR E T, SR AT R —KHK
Ha) T FUR T, S IR R e I 5 5 A JE AR OR, RENS 5 /N0 I i e 240 0 v R A R A2 1) EGFR
I HARBLH U DIRA S AR E e Horb, (ea) 14 BTG B BUK PR R I T I8 57
IR R, BRI AR REE, LSSt s ) g 4 AT RS AR 2R AU BE I [5 1] A3 PR EEBe SR A it K
PREE, ATOE TG, ARG bR AR AR B 7 2 1 P AR P K B RN, 098 T BRUKAR R R BT R
.

4. P 5RE

LKL, PROTAC BRCAERT T 8T, EREXHEGFRMARRN, HERES
BT, Bk, SRR I E B AR SRS AR b B ERXFPR ST, 5 PROTAC SoARHLUN
HyTs BORZHIGHE 7 A5G, HAE S A i R Ui B2 H 28 & . 5 PROTAC ML, HyTs H
AEARM T 5 S AR R DL B U (0 25 AEh A R S o SR, BTXS HyTs (IR FT 74k
WP, AR AR ZAL: F—, HRTHUKARZE R 2 @i B e 2 B IR R A R T, Sz
X REEE AR EEREE, 2OKE HyT RN AEEA, IR EUE A FURERH RS 8, 5URIEERE]
ER. 6=, BB RN Z KT 28t sk mARA RS R R, AR TN AN
ERUN LT &, B PIRR PRI KRS . =, AT HyT MoRHEAIRR, Wt i R
e, BRI Hy T B 25AEN JAvnETAN A R, 8 MR AR ok (R S B [
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