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Abstract

Objective: This study aimed to investigate the interaction mechanism between luteolin, one of the
primary active components of Phyllanthus urinaria, and Protein Tyrosine Kinase 2 (PTK2), a pro-
tein associated with liver fibrosis, using computational simulation methods, and to evaluate its po-
tential as a PTK2 inhibitor. Methods: Molecular docking was employed to predict the optimal bind-
ing mode and affinity between luteolin and PTK2. Subsequently, Molecular Dynamics (MD) simula-
tions were used to assess the structural stability, dynamic behavior, and key interactions of the
complex over 100 ns. Finally, the binding free energy was calculated using the MM-PBSA method,
followed by per-residue energy decomposition analysis. Results: Molecular docking revealed that
luteolin exhibits high affinity (optimal binding energy: —-8.0 kcal/mol) for PTK2 and stably binds
within its active pocket. MD simulations indicated that the complex structure remained stable, with
no significant displacement of luteolin within the binding pocket. The binding free energy calculation
(AGvina = —68.815 K] /mol) confirmed that the binding is a spontaneous process. Energy decomposi-
tion revealed that the binding is primarily driven by van der Waals forces (hydrophobic interac-
tions), supplemented by a critical hydrogen bond network. Per-residue energy contribution analy-
sis further identified ILE-428, LEU-553, and CYS-502 as key “hotspot” residues. Conclusion: Theo-
retical calculations predict that luteolin can effectively inhibit PTK2 activity by forming a stable
complex with its active pocket. This provides a molecular-level basis for explaining luteolin’s anti-
hepatic fibrosis mechanism and suggests directions for optimizing it as a lead compound.
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1. 53|

TERF A HEAL T b, B A RS BRI 2(PTK2) (X HKXA Proline-rich tyrosine kinase 2)7E v 4k I AT 2
RAPHSCs) FmRIE, FHBE /5 FIHE 5@t HSCs TG AIIGTE, AT SRS T AR 4R RE o
W, SEE D PTK2 BIENE BB A 4 2t R EE 7 W) 5, PTK2 7E TGF-B 5%
f) HSCs &b HaE i M. MR, TGF-p A ALl L HSCs F a-SMA. T AR, NOX4,
CTGF. TGF-g1 #il Smad7 )31k, 1M FAK Z5R 01 40 REBg ] TGF-B T A0S S Im k(1]
UEAh, PTK2 MBS S5 AL IN RIRTE CCLALIR /N BRI LA 853 4 YR AL B 40 1) B 35 R AR T 45
FITUESE[1]. HIR, FAK {55 @ERTE HSCs MMLIEE S fEh thilc & EEEH . MHE#E R T FAK 7E
HSCs 354k i Hodth 70 ML - 1l 2, MFAP4 i85 5 HSCs i ERIHEA R avp3 454, 0% FAK/PI3K/NFxB
ok, MIM{Edt HSCs BIEICHIFE, mAMBL4Eie3]. [N, IGF2BP1 #idfaE TUBB4B
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mRNA, {23 HSCs 1i%1k, i TUBB4B illid#i& FAK 15 50 %1% S AT 27 4E4k[4]. AL, PTK2 £ HSCs
TR A AEA RS T BAF BB E A, Hodd 2 05 S am e A BAE A3 HSCs IS AL A SE . $B 1)
I PTK2 B HAH SGAZ S I ER (& 1, 7T e A 2R 4R IR R T S BB (1) SR AN B Ao IX BUff 0 FE A PTK2
TEMF A AEAG T VR FALHISR B 78T A, IR NARRINZ YT K BE5E T R

MNERAE —PME SR 2, RN 2N E SR TR T IR, ORI LA 44 s 1 Ca 2 Tt 5
WESE[5][6]. ARERAEAM FERRIFEEIEMR < —, O 2t R AU A4 b B EH . B
FLARI, AR B g I ) 22 P AN R 4% 2 5015 S IE K, RS A SO R ST A 4R BN . B TR B,
KRB R ZE ] TGF-A1 1551 Smad2 1 AKT BEERAL, Wb 1A 4EAG i R A [ 7] IXFR 28 2l
PRI, AR R R AP A 4EA ity T h BT RS AT 5. AW, ARRERE S EHEEH
T HEAG R R BERE i PTK2, DA = F A RAR A ELAE AL, H AT AERE . BT, A 5Eie
HARMAR R ARBREL R ARSI B4 A PTK2 WS D48, e veah & FEA0 s v, 3k i BE b
FHRAR L AEAAS Sl EE, X 0] RE 2 H R IEPUR A4 AR I E 2 AL 2 —

NEAEMARG, AR SRS TR T H R TR TR B R 5 PTK2 (W4
G GRS BEJEHET 100 ns T2 5440, MBS ME KRG E AN Emiae e,
KMABEAEREN: &EHRH MM-PBSA 771t H 456 B HEE, I ek oimk, Mmse s 1K L
AR B RS PTK2 456 W0 T2l g T R B8 PTK2 i) FI5e L2 iR 5 S o

2. RS RE

I THEERT 743 FH AutoDock Vina 1.1.2 #4458 . i PubChem #dE % (https://pubchem.ncbi.nlm.nih.gov)
TEBCAR(R B E, Luteolin) Mol2 #%xU45 1. R H B2 R 2 (PTK2, PDBID 2y 1IMP8)M PDB %4
J (https://www.rcsb.org/) N %k PDB #% 204514, FLid i PyMOL X 2 A FCARFEBR K 4 7 225k % . T AutoDock
Tools 1.5.7 AT INA MRS, ZHNEE). B MRS A G, BRI SZ R0 735N
PDBQT ¥, B & 285 L config 14, T AutoDock Vina 1.1.2 #4740 F5F4%, 18 H PyMoL
A S5 ATk . B RAZ45HI(PTK2, PDBID N IMPO)FEHZET: (1) HAOPREE(1.60 A), fEf
BEAERR I A0 s (2) NBERRAIRES TR S M, BB AR BRI R (3) 8 Se BB &5 1L,
HIEHA N FEAATI, &E& T 7R 7. 6 AutoDock Tools 1.5.7 #E4T 20 T, XHE&ET
HRLC AR AR E SORTETE DS B FE (W TLE-428) 0y, ST R/ANEE AN 225 Ax225 A x225A, DI
PR 58 A1 i BN PR A8 X3

T IR H GROMACS 2022.2 #47. HEEFUEH Amberl4SB /137, #if4 TIP3P. /Ny
F-LA antechamber 42 AM1-BCC HLfi MK T GAFF2 JR 1257, 4 ACPYPE ¥4 GROMACS 1,
BT 245 TIP3P #e% (Joung-Cheatham). ¥ E &Y E THA T kG b, B ESMRT 2 G0 A1
FEES > 1.2 nm, A TIP3P /KFE4MIN Nat/Cl R AA R 2 0.15 M. R B 55K Steepest Descent A i fx
/IME(ZE Finax < 1000 kJ-mol™"-nm™), BEJE7E 298 K FiHEAT 200 ps ) NVT F1 NPT 7r B BCFflir. 2B 7= HH7E
NPT %14+ Figf7 100 ns, WK 2 fs, Verlet #ilr. FEOCH BAERRH PME, JufBEMHEERSES
HEEYN 1.20m, FTE W AREBERH LINCS BT 49, 5 K 714 %] H Nose-Hoover 5 Par-
rinello-Rahman 44 298 K 5 1 bar. #LiiE 10 ps it — %, #4154 GROMACS T.A & VMD/PyMOL
AT SHEAER T RIS RIGFR @ IE, 7652 100 ns BEDUEEAE b, FRATIHGIN T IS
19 100 ns AN, Fra BRSO E. ARWE SEBRFERESC . PUBaikE T =k
HABAUI P4 R 56 B BT RS A B s — IRE AU 20~100 ns FFR B PR B T 5R A GMIX-
MMPBSA T ., HEFEH) IR (GB)RE R (igh = 5)AbFEAR MEVAFILBE, HAyaREA R - iS4
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PP RS F K (en) BEEL 1, SRS LR B (eou) BEEDN 80 JRXF4E & H HIBE I DTBR(—TAS) K H]
HEVE I AT AT A 5

3. ZR5TR

3.1. HFMNEEREE VSO

Table 1. Molecular Docking Results of Luteolin with PTK2
1. KBERS PTK2 9 FriHesh

Mode Affinity (kcal/mol) Dist from RMSD Lb. Best mode RMSD u.b.
1 —-8.0 0.000 0.000
2 -7.8 1.400 2.785
3 -7.7 2217 6.689
4 -7.7 1.916 7.082
5 -7.4 1.946 6.705
6 -7.3 2.171 7.110
7 7.1 2.368 7.026
8 -7.1 2.990 4.152
9 -6.9 2.501 3.968

ATREERNE 1, KBEFEEREH A PTK2 RIWHBERIIG G 1. Bf g A= D
oM I N-8.0 keal/mol, XE—ANAEREALMHUE, @WRIMEWEA BENEDEME. A, H4
AT ILI 4 S i L 45 A RE ISR T 6.9 keal/mol, #E—2DAESE T 45 GAEH I T EEME. 45 b — AN CEE R b
B R mZRMSD), EH T EAFZE G RN R ZESR . BEAESNE, KX 2 5e A
X DEIMRAEFE HIERMSD 1Lb. = 1.400 A), RIIZLEGLRERNFE. /M, MBI 3 4, H RMSD
FRR(ub)E 2R 4 0 7.082 A), XA TRBE R PTK2 456 AR T RaAFAE 2 Fh 2 7 1R
KIEEEIn), I 7 G RIEE. XM R RS K2 MRt A R, nr5EAR
AR A TR o 28 BT, W45 B NI ) 22 (R A ) I 4540 (2 5 A B ) A 2 T
FLIFFGN AR R E L PTK2 I —ANE H s BMH gL, RGNS T3 1 BRIRAN IR R &1
SEVE SRR 1 IR S LA

HIRFEAR B R Z (Luteolin) 5 PTK2 S AMLE SR, FATEAT 170 F0HEE R oA . 4558 a0
K1 R, KEBHEZRRCHE ST PTK2 FiEtEO4SN . 5800k, HaaTEmEE. mk
FHEAEFH R a8 3L m4Edr . BART S, AR B E 401 b (1 M e Ji AN B i AU 1 5 0 M 1 48 o 119 S
BHE GLU-500. CYS-502 F1 ASP-564 TERL [ BRI EBEM 4, XAl Be NS G iRt 1 F Z R0 R A0 5 )
o R, KRBRFERRGERENS LYS-454 FRIEE 2 [AAAE Pi-FHES FAHEAEH, JF5 ALA-452. VAL-
436 LEU-553 Fl ILE-428 SRR PEFREMMIBETZ i 1) V2 1 Pi-bedk BiKAH BAEF, XA Bh THgaRas &
WISER 77, BE4h, VAL-484, MET-499. GLN-432 %54 JLi@il e ) SHcA SN &, #—BHE T
SEEEMMRRENE.

ZXT BRI TRREREN ZE S FEAHEER S PTK2 mad s fsiat. DR Er
GNWITRGERIEAT 50 T I 13, G B FAEsh &K i — PR B A mietE, ek
BV 4 e 5 A ELAE F AL R
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Figure 1. Visualization of the Luteolin-PTK2 protein binding mode
1. RBERS5 PTK2 EEMESEA AL

3.2. BEMS

3.2.1. RMSD 44

NP AR R B2 -PTK2 HAWITE 100 ns 7318 /1 B i R RsE v, JAT0 T 269, &H
JoT B 4 DA R AR 132 7 AR A 22 (RMIS D) i ] [B] IR A (15 2)0 25 SRR B, BEAME RIS ISR 1 P4
K& EEPH) RMSD EHI4A 20 ns N 2L ETHESS, B JE7E 20 % 100 ns HRIFS E £ 0.25 +0.05 nm [
VO NS, R\ EMAERCE TN ER2dE, EERESEMN RMSD R EE &Y K —
HHBAES, IR R R AIZKA(Z 0.15 nm), X e 8 B AR R AL SR G IR R E . T
NEER)E, BB Z ) RMSD (IR 240 T 5AK/KF(<0.1 nm), HIEshk/N, XA Tl | R ik
FEEE AR BEE DA 2 SRR AR, WA KA BB BRI . &5 Bk, 56, AR
=2 1) RMSD HH AR JE AU S R4, X ULIHEEAN > T3 1R RIE B T RE, NGS5
P AR ELAE B Sh A RRAE SR AL T T SE RS A

0.5 1

0.4
€ variable
& i : —— Complex
) ™| .
%) | R A —— Ligand

) |

E h'” 1” P}W' ldfmT SIMAM  — Protein

ul AT

Simulation Time (ns)

Figure 2. RMSD results of the complex, protein backbone, and ligand
2. B4 EBERERUKLEKE RMSD £45R

3.2.2.Rg 4R

NP AR BB 3R -PTK2 5 YI7E 100 ns 73580 ) A AU R o G5 Mg 1) R 35 1 5 AR M RN A e 1
A0 T ZE AR E1ERe) . WE 3 Fin, E6Y0 R EAEREANBRUL R A E IR
s FERAIN] 20 ns N, RgHA 17— LFHFIEEEI B, RW\EEWEE ELET R — e R 50k
A5 f£20ns £2) 75ns 7], Rg {H1E 1.90 nm £ 1.98 nm WISEFE Nz, BoRHgiiBa — g rsh&xR
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P BHHETE 75 ns J5, Rg HESIGFRRETESL 1.95 nm L, H IR R &N X —25 55 M
RY], HEWRREET G AR T3 FERES . H R B ARFFE — M S A (5 5 2= Bk
WE AL, XA RS PTK2 & ARG ISR ¢ SHE E R, Re MRS, 456 2/ RMSD
M trai g, LFEIEM FARBRERYE PTK2 MK E WA DKM RIS E, LM KR ik 2
TV, P Z IR AR S AR PSR4 1 AR 8 A M A

0 25 50 75 100
Simulation Time (ns)

Figure 3. Radius of gyration results of the complex

3. EAYIKEEFRER

3.2.3. RMSF 9%

HNIRGT PTK2 B AR EARBR R G SRR REiEah 2, O T 26058131 1%
RS 25 5 Rk V& (RMSF) . W 4 FiTzs, PTK2 & FHZ) 700 M FEE ) RMSF H 28U H 535 AN 2]
). BARKE, KEB/IIRFEN RMSF HHMK(<0.2 nm), 2B 5 (104 O 46 M sk B e iR, 3%
W S5TE N a3 -SSR K. [ERTEREINE, EER 52 100~150. 300~350 LA
500~550 %5 [X 8] tH 3L 7 BH 2 /) RMSF IEAE (>0.3 nm), 1 %4 [X 35038 5 56 07 2 )5 2R 1 1937 [X (loops) 3 A i »
FURE I M T REXT TR AU M R D) e R B E EEAEH . UGN, FAAR R R R 4
AL R IERFE I, B BT R B GLU-500. CYS-502 %5)ff] RMSF {8 4b T8 KA, $#or
KRB R 456 r] Rl id oo i 1 R R 5, dEmisgn PTK2 BEEEYE. 1% RMSF g R
ZHi RMSD. Rg M &5 e A0 BLEDIE, LFEHER T RBE R -PTK2 B EMER ARSI EN KT =T,
MR R, BRI A G LRI AL 1 A5 )2 T ) LA

0.5

RMSF (nm)
o o
w e

©
[N}

=)
o

500 600
Residues

Figure 4. RMSF results from the molecular dynamics simulation trajectory of the complex

Bl 4. EEM7 TFRANFRIUEITA RMSF 4R

DOI: 10.12677/hjmce.2026.141007 69 251k


https://doi.org/10.12677/hjmce.2026.141007

I

3.24. FLRESH

NSNS E EEARBE R PTK2 SEALE NN ERE M, A1 7/ 50
5 & [ 5B AR5 O (Protein-ligand) PA K 55 7N 431 &5 & 1148 5% 36 57T 0y (Pocket-ligand) -2 [8] [ i (25 Bl B [8] (1) 48
(1 5). BRI IR, PIAREE B HZBEVI GG 1~40 ns NI T — 2 sh 5T %, Ib/E B2 B4
H(100 ns), PSR T F28 HIPEDIRES o /N5 856 AR5 O (1 BE B S A2 8 2L 0.75 nm AR IKF,
B ahTa I, X ERAIE Y] TR R B R A B % M B A E R a6 0 e i 5 T8 R AR W S R A 8 i %
[y, N 5EARBEARROMESREEL 1.55mm, HEKTOSEE, X5HISTHYHLST, FA
EEB O T2 TR LA Gy, gs A H 5808 5 AL T 8 0 3R T BN S04 X3 %000 B A3 B 5
REH, ERNBEREES, KBERREMS ST PTK2 FiE 8+, X—4 R 5174 RMSD. Rg
I RMSF HI5r BT 5 0 AH ELEIIE,  FEFRI A FE M IS TR R ER-PTK2 6V EA RIFMgafaett.

variable
—— Pocket-ligand

—— Protein-ligand

=
&

Distance (nm)
=

o
U

0

0 25 50 75 100
Simulation Time (ns)

Figure 5. Center-of-mass distance versus time curve of the complex

5. Bul “BEES - BE)” TiLEhLk

3.2.5. Buried SASA #31f

MR 7R Je R IR (Buried SASA)RAEAL A — & A E AW AT K/INIEE R S5
6 i, ARBERS PTK2 454 FLIHiY) Buried SASA £ 100 ns 2 13 1 2g g, HAE R AT
5.0 & 7.8 nm? (3G H Py o 7EBLHLIIATHH(0~40 ns), ZAEAFTE— @5l RUILE G FURITE T H S 5
FERE S A (40~100 ns), Buried SASA FE 44 6.2 nm? (K I MEBE4T /MBS S, I L 00H B A iUkt
XL AHRR, KBERYE PTK2 B T — MK HARE Al St i . 40K 1Y) Buried
SASA {H(>5.0 nm?)$E/R 38 Z [BAFLE T 12 YA R B AN B KA BAE o THZE AR i T 3h &7
i, U0 N SRR AR 0 M FEE S, B AP G OSRE, M FRa NG DS s
BURAEBERN . IS5 L 5H0A RMSD. RMSF 50 JE 28 1) 3 A 45 AR FLENE,  JL[RI S0 TR R 3
5 PTK2 RE A e 4 A4t .

3.2.6. FAMRBESH

NEMERARBEZRI PTK2 EEASE RN EREN, FA TR 2730 71 2B AN R
[ A R 1 o 2R A A (ARl B R) B L8 5 AR R B3R 0 T (LM B R om) AT B i, SR AL 7 B
e XFEREE R B GO RoR, H A% IR AR TS DA G S — 3 BRI K
PREER IR X AR, JX 5 HTIE RMSF 228 RV & . BORBENE, T & aWR T IARRER
T HRE L E B AERIIEXHEAL R, 2RISR SRS SR X 2R ARV, £ 100 ns [
B R, RBEREA KA GBSO AR g ey, 5 GBI (I GLU-500. CYS-502
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SIS (A A L B AR FFRSE » A AR B A T NG R T HUL R T 58 e SE VARRH RS PTK2
LE A

GEAFRENME, ARTREETHUERMSD. RMSF. FEE . SASA)HI T 45024t T B M S MEds, JEIH
P TORR R L PTK2 VEEH I8 1 .

10

Buried SASA (nm?)
o »

19
&)

0 25 50 75 100
Simulation Time (ns)

Figure 6. Buried SASA time evolution curve
6. Buried SASA B [B]ZE 1L 4%

Figure 7. Structural superposition of representative conformations from the 100 ns MD Simulation of the Luteolin-PTK2
Complex

7. RKBRER-PTK2 EEH7E 100 ns D FEHNFEMPHRRBURES

33. M FEEASBMEEERSH

AR RRER - HARSMKRBEM . AR RS PTK2 2[0S A A HKsh &5
SENE, FAT T RS R SRR AR (L 8). A5 R &R, 1E 100 ns AR, SEEHRAE 0 2
IS, FEIRAYERAE — B AP CPBIALN 1~2 AN (EAERIE, SR IR R R TR i
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KAH, T2 SIS RS W BRI, X R T A EE o o7 A B I S s B R . S an ik,
SFRMIFTAAERAARBER S PTK2 WG MR (W #4245 AR 1) GLU-500. ASP-564 %5)2 [A]J%
BT e R E A TAE I 2% o X MBS RS ERIE R, SHUKM A ERE, JLFER TR
SENRAMIREE G . S RIS TER I MEE, e TARBRR-PTK2 EEMNLEE
faE .

10

154

Hbond Number

2.5

100

0

I“II HII‘H | IIIXII\III LA IJI \I

Simulation Time (ns)

0

Figure 8. Hydrogen bonds at the Luteolin-PTK2 Binding Interface vs. Time
E 8. KBERS PTK2 EREAFESBHEMEATEIHETL

34. MrFEEAGSANHEEERSH

3.4.1. BB SERENEE(ERSHT

NEBRVIARERS PTK2 AL S EZIKS) ), TATTHE TR FE A IS R RN (1)
ZE4 H B RE(Binding) K LA AL 5y . JUAELE ) (VDW, A5 B /KR ELAE FH) AN f A B B (ELE), &5
BN 9 FiR. 76 100 ns B, S454 RE(Binding)fEZA 72 20 ns (B G T RamE, HAE X B35
=200 kJ/mol %-350 kJ/mol HJHEIX[A]. ZEFEAMIMERUARBE RS PTK2 H4i6 £ —ME KT
o MRERE DRI B, ML EA/EH(VDW) R4 &1 EBIRE) 1, HHEk(Z-60 £-150 kl/mol)
TR FHHEAHEAEHELE, £-50 £ 0 ki/mol). {H#3ERM 2, ELE {H7E-50 {5 L F#sh, HIER L)
ZINIEAE, XA RS RO R AT BEAELE — (R B, R AN S e 45 5 K v A AR 51 g e
SR PAANEF IR S AR BB A T4, KBNS LA e R iR E . ZREE T WA
T ERR R TRRE RS PTK2 456 5 2 uBae ) (5 B /K8 Bk 5l , H 454 Re i fe e it — 0 Mg
B T E AR S, S5ariR g 24 45 FAH B B .

3.4.2. BT

Nt EMARERYE PTK2 M4 G5 I ER A G801, AT 4130 1l m iz
SEFNE, K MM-PBSA AT H T 456 A BAERILEEE SR, SRW%E 2 Por. IHEARIN LSS
HHBE(AGbind) N—68.815+5.448 kl/mol, REMEKXM - HEGR—NEEAKKNERE, BURERENSE
MAy. BEEMRE R, TOMEM EAEH(AEvdw=—121.946 kl/mol) /& 45 & i & L HE 0K 5h 17, Hotik & it
it 80%, 7t T FRURH HLAF FH (AEele = —14.852 kJ/mol). 141k, AER P& 7714k BE(AEnonpol =—15.339 kJ/mol,
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1M &
=83.322 kJ/mol)/™ & T ELRHIANHSAM , X 38 % 2 H 7 A SR 25 VA R AL i v 1) E R T 9 P . e
SR 91 )15 RE(AEvdw + AEele) IO A I STHR AL E 50 e 1 Bk 25 3 FIL O RE R A6, ATTERE) 1 H
K&E. GREPR, RBFERS PTK2 B4 & 18 B e Mg KRS 985, %45 R
SERMIESE | —F G IREN, SaRais 1o fr(n{k RMSD. F25E 4 &) 45k mE

AR BR RS W HEHE T 825 (A FI TR, HoTik L 5 i r A A 2 L S o ST, ARV HIL BE(AEpol

—
200 4
_~ 0 T
3 ‘ :

‘ ; variable
£ T YT TFTRTY BT [RONARRE I APy voriabs
= e T”'mw \M"ﬂ""“'\" i, ")" Ly b hf"”’“ﬂ"ﬁ“ﬁ*!‘f&" "'w"f‘ L u'."'r i Binding
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Figure 9. Binding free energy versus time curve

9. LA B HEE - BRI ks
Table 2. Per-residue MM-PBSA Decomposition for the Luteolin-PTK2 Complex (unit: kJ/mol)
2. KEEZ5 PTK2 £414H MM-PBSA & B HEESR(BEAL: kI/mol)

Complex AEvdw AEele AEpol AEnonpol AEMMPBSA —TAS AGbind*

Protein-Ligand —121.946 £2.778 —14.852 +0.664 83.322+3.47 —15.339+0.156 —68.815+5.448 12.516+2.841 —56.299 + 6.978

*AGbind = AEmmpasa — TAS.

34.3. BREREKSW

NAES T2 RARRERE PTK2 A4 A I A, FRATH MM-PBSA 454 H HHEE
BT T IBRIE DR, R 10 B, odrRoR, 456 H BeEmA R vk 3 BEH TGt R8N T
ZA KRS, Hd, ILE-428 fll LEU-553 Hystiki MR (45 AR AG 73 5K T-—5kJ/mol. —4kJ/mol),
KR BLKAE BAEH GOEE I R E T F IS ), ST EBIARLE & R s it —2. LAk, VAL-436,
ALA-452, MET-499, LEU-501, CYS-502, LEU-504 %5— R 55k FEEMIRML T B 2E A Rl ok, JEHER
WA BEIE AR T — MaE e K4 & D48 REAERE R IR, B0 FXEh 5K R E R AT CYS-
502 HRIH R EH AL ERE, XUFSL TS 8 BAE RS G R h R EFE, XRRAR
B P RE L AR GG 17 77, (A AT e i FOk SR, ARSRIUL TR SR Tt ik Ik e & iR ]
MR ETHEMHE R T RBEERE PTK2 456 MO “#” iR, #Hn T HEG FEH) Z 5K
RNAT, FFSREE A R R, AR SRR S M SRR A T B BIEE
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Figure 10. Per-residue Decomposition of the Luteolin-PTK2 Binding Free Energy
E 10. KEERE PTK2 454 BHAEMNZEREK D

4. &g

AT A T TS E B maeitE, Rt 7R VIR B R R
N AR BRI 2(PTK2)WEAEHIHI 77 (1) = s A AL 5 sk A E . 00 as g e s 7R
R PTK2 454 NS BA W3R M J1(45 688 N—8.0 keal/mol). BEJE, Kk 100 40FB 17315 1 244540
ZAYEFEIUE TR SRR et BAY. BRI A B (135 7 AR 2 TR S SO 4E R UK
s B4R A R ] R T AR i R B G4 5% B ah & e . RO 5 & A g
P A8 R R B R AR/ NVE B N 5, B IR SEA R B R [ R e T 45 A 008 N, R AEMR
. A, FREEERTE AT EOR, FORIIES A SRR T IS DS IX S R B A

EAERNHIET, 456 B3 EER TARRRERYE PTK2 W46 — MHB/KHEEERERHA
RITFE . OB DS IRBN 45 G B RA% O DTHR I, 1T B0 A8 T B HL RS A7AE IR 20 B I 28 T At T DG B (1 e S
PEUN . XS5 A H HHREEAT Ak L A it — B A IR RUBE BRI H ILE-428. LEU-553. CYS-502 55— 541
A R BREE, EASERIMER T —MRE RIBUKE GRS, S EAAIE R E AR .

gE LRTR, ARSI TR A R mT R AE Y PTK2 Al SR, AZife H AT
FA R PR AEA— T FAIAT 7T, g B 3 BRI T AL B, LT SE kAT 75 5 SR ik
HMFIR N SIS (AN 45 & assays~ A HZK-F- A0 SL00 56 ) iE— B I0HIE . BEAh, THESIRUAR B (an J13A kG FE 1A
I () R WAETE A L. AWk, AR F/KFHRR T RB R RS PTK2 A EAE bS], $2
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