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Abstract

Magnetic Resonance Imaging (MRI) is a powerful diagnostic technique that can penetrate deep into
tissues and provide excellent spatial resolution. Gadolinium, due to its strong paramagnetization,
is widely used as a contrast agent to enhance MRI. However, due to the lack of contrast agents with
high relaxation, targeting and specificity, clinical MRI diagnosis has been seriously hindered in the
face of complex and changeable disease conditions. Meanwhile, unstable contrast agents release
free gadolinium ions, which increase the risk of renal fibrosis. Therefore, developing gadolinium-
based contrast agents that are safe, targeted and highly efficient has become a major challenge in
current medical imaging technology. This article mainly discusses the influencing factors of the
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effect of gadolinium-based contrast agents and the synthesis research of some compounds.
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Figure 1. Key parameters that affect inner-sphere relaxivity
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Figure 2. Commercially available gadolinium contrast agents for MRI
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Figure 3. Synthetic route of Gd-OPDMA
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Figure 5. (a) Phantom images of Gd-DOTA-LAE and Gadovist. (b) R curves of Gd-DOTA-LAE, and Gadovist. (c) Rz curves
of Gd-DOTA-LAE and Gadovist
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Figure 10. Synthesis of folate coupled precursor
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