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摘  要 

本研究针对传统纤维素纳米纤维(CNFs)制备过程中的高能耗与高污染问题，创新性地以入侵物种水葫芦

为原料，开发了一种基于温和碱处理与机械研磨的绿色制备工艺。通过扫描电镜(ZEISS GeminiSEM 300)、
气体吸附仪(Quantachrome Autosorb)和傅里叶变换红外光谱仪(NicoletiS50)等多尺度表征手段，系统

揭示了水葫芦基(CNFs)的微观形貌、官能团变化与孔结构特征，成功制备出直径(20~50 nm)、分散均匀

的纤维素纳米纤维，其比表面积为0.043 ± 0.002 m2/g，并以介孔为主。该工艺较传统方法化学试剂用

量减少60%、能耗降低40%，实现了水葫芦从生态危害向高附加值材料的转化，为纳米复合材料、环保

过滤膜等领域提供了可持续的解决方案。 
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Abstract 
To address the high energy consumption and high pollution issues in traditional cellulose nanocrystala 
(CNFs) preparation, this study used the invasive species water hyacinth as raw material and developed 
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a green process of “mild alkali treatment-mechanical grinding”. Through characterization by scan-
ning electron microscopy (ZEISS GeminiSEM 300), gas adsorption analyzer (Quantachrome Auto-
sorb), etc., the micro-structure and properties were revealed: CNFs with uniform dispersion and 
diameter of 20~50 nm were successfully prepared, with a specific surface area of 0.043 ± 0.002 m2/g, 
mainly composed of mesopores. Compared with traditional methods, this process reduces chemical 
reagent dosage by 60% and energy consumption by 40%, realizing the transformation of water hy-
acinth from an ecological hazard to a high-value-added material, and providing a sustainable solu-
tion for the fields of nanocomposites and environmental protection filter membranes. 
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1. 引言 

纤维素纳米纤维(CNFs)凭借低密度(1.6 g/cm3)、高弹性模量(138 GPa)及可生物降解特性，在航空航天

复合材料、柔性电子器件、环保过滤等领域应用前景广阔[1]。但传统以木材为原料的制备工艺存在显著

缺陷，一是依赖强酸、强碱与氧化剂组合脱除木质素，反应剧烈，每吨 CNFs 约产生 20 吨化学废液，污

染严重；二是木材预处理能耗占总工艺的 35%，原料成本高，制约产业化[2]。 
水葫芦(Eichhornia crassipes)作为全球“生态入侵物种”，具有繁殖快、纤维素含量高、木质素含量

低等优势[3] [4]，是制备 CNFs 的理想低成本原料。然而，水葫芦纤维束呈海绵状致密结构，纤维素分子

间通过强氢键交联形成聚集体，如何在温和条件下实现纳米级解离，同时精准调控介孔结构以匹配应用

需求，成为当前关键科学问题。 
现有研究中，Tanpichai 等(2019)虽以水葫芦制备出 30~80 nm 的 CNFs，但未涉及孔结构演化[5]；

Oksman 团队(2021)将其与聚乳酸(PLA)复合，却未解决团聚问题[6]。国内早期聚焦水葫芦填埋、焚烧(资
源化利用率 ≤ 5%)，近年虽向高值化发展(如同步糖化发酵产乙醇、高温制备活性炭等)，但针对水葫芦基

CNFs 的“低能耗制备–孔结构调控–应用匹配”系统性研究仍处空白[7] [8]。此外，BET 法、BJH 模型

虽为孔结构分析主流技术，但低木质素原料中纤维解离与介孔演化的动态关系，及介孔尺寸对性能的量

化影响，均缺乏数据支撑[9]。 
针对上述问题，本研究建立水葫芦茎部纤维素“预处理–纳米纤维化–孔结构调控”全流程体系，

新增介孔与性能关联分析；开发无有机溶剂的“温和碱处理–三级机械研磨”工艺，化学试剂用量减少

60%、能耗降低 40%；“15~28 nm 介孔 + 1.4 nm 微孔”多级结构。该方法为材料结构设计提供理论依据，

并将制备成本至 180 元/吨，为后期产业化提供可能性。 

2. 材料与方法 

2.1. 实验材料 

预处理莲纤维，去离子水冲洗 3 次，60℃鼓风干燥箱干燥 72 小时，行星式球磨机粉碎至粒径 ≤ 2 
mm，密封备用。 
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试剂是次氯酸钠、氢氧化钾、氢氧化钠、冰醋酸、2,2,6,6-四甲基哌啶-1-氧自由基、溴化钠、次氯酸

钠溶液、无水乙醇等试剂均为分析纯；分析纯 KOH、无水乙醇(99.7%, Sigma-Aldrich)、光谱纯 KBr，实

验用水为去离子水。 
仪器是扫描电镜、气体吸附仪(Quantachrome Autosorb Station 1，美国)、X 射线衍射仪、傅里叶变换

红外光谱仪、热重分析仪。 

2.2. 实验方法 

2.2.1. 碱处理优化 
称取 6 g 预处理后的 KF，浸入含 6.7 g NaClO2 的 700 mL 去离子水溶液中，确保纤维完全浸没，将

混合体系置于 70℃恒温水浴锅中加热 4 小时，期间每 1 小时滴加 1 mL CH3COOH 溶液，共 3 次去除酸

溶性木质素，反应结束后，经砂芯漏斗过滤，用去离子水洗至中性碱浓度是 4 wt% KOH 溶液(固液比(1:20 
g/mL)、90℃恒温水浴搅拌 2 小时，将水洗后的纤维放入 700 mL 6% KOH 溶液中，25℃~28℃室温下静置

8 小时，随后 80℃水浴加热 2 小时，去除碱溶性木质素和半纤维素，之后加入 100 mL 25% NaOH 溶液浸

泡 0.5 小时，促进纤维分散，重复 2 次后去离子水洗涤至中性，无水乙醇脱水 3 次，60℃真空干燥 8 小

时，得碱处理纤维。 

2.2.2. 机械研磨工艺 
本研究采用分级机械研磨工艺制备纳米纤维素(CNFs)，其过程分为三级，依次实现从宏观解离到纳米化

与均质化的精准控制。首先进行初级破碎：将碱处理纤维与去离子水按 1:20 (g/mL)混合，使用 Vita-mix 搅

拌机(TNC520)在 37,000 rpm 下处理 2 分钟，获得均匀悬浮液。该步骤通过高强度剪切作用实现纤维束的充

分分散与深度润胀，为后续纳米级解离奠定结构基础。随后进行精细研磨：将上述悬浮液导入 Microfluidizer 
MF-100 高压微射流研磨机，在 1500 bar 压力下通过 0.25 mm 间隙的交互容腔循环处理 3 次。此阶段利用超

高压力产生的空化、剪切与碰撞协同效应，有效将微米级纤维剥离为纳米纤丝，是实现纳米化的核心步骤。

最后进行均质化处理：采用高压均质机在 100 MPa 压力下对悬浮液循环处理 2 次，以进一步细化残留聚集

体、均化纤丝尺寸并提升分散稳定性，最终制得固含量为 1.5 ± 0.1 wt%的 CNFs 悬浮液，并于 4℃冷藏备用。

该三级工艺环环相扣：初级破碎为高压微射流提供适宜物料并保护设备，微射流实现高效纳米剥离，高压均

质则完成最终精细分散与产物标准化，整体在控制能耗的同时，确保了 CNFs 的高品质与批次一致性。 

2.3. 多尺度表征体系 

2.3.1. 微观形貌分析 
样品制备是 CNFs 悬浮液滴于硅片，60℃真空干燥后，离子溅射仪(JEOLJFC-1600)镀铂 10 nm。测试

参数是加速电压 1.5 kV，工作距离 10 mm，二次电子成像，放大倍数 5000~50,000 倍。数据可靠性是每

个样品随机 5 个视野，RSD ≤ 3%。 

2.3.2. 孔结构表征 
样品预处理是 0.5 g 干燥 CNFs，120℃真空脱气 8 小时；测试条件是液氮浴(77.3 K)，相对压力(P/P₀) 

10−6~0.998，静态容量法测吸附–脱附曲线。采用多点 BET 方法计算比表面积(r = 0.99978)，BJH 模型分

析介孔(2~50 nm)，DFT 模型算微孔(<2 nm)。BET 方程参数是斜率为 79,560.465 g/m2，截距在 1.178 × 103 
g/m2，C 常数为 68.534。 

2.3.3. 傅里叶变换红外光谱分析 
样品制备：分别取未处理纤维、碱处理纤维、水葫芦基 CNFs 各 1 mg，与 100 mg 光谱纯 KBr 混合，
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在玛瑙研钵中研磨至粒径 < 2 μm，随后在 10 MPa 压力下保压 3 分钟，压制成直径 13 mm、厚度为 0.5 
mm 的透明薄片，避免引入杂质干扰官能团信号。采用傅里叶变换红外光谱仪，扫描范围 400~4000 cm−1，

分辨率 4 cm−1，扫描次数 32 次，以空白 KBr 薄片为背景进行基线校正。 

3. 结果与讨论 

3.1. 微观形貌与分散性 

SEM 结果显示，图 1(a)和图 1(b)是 CNFs 的扫描电子显微镜(SEM)图像，放大倍数分别为 × 100 μm
和×20 μm。图像展示了 CNFs 的纤维状结构，具有高度的分支和网络结构，体现了纳米尺度上的纤维形

态。图 1(c)和图 1(d)是通过 Image J 软件得到的 CNFs 的长宽分布直方图。范围从 140 到 650 纳米，宽度

从 3 到 9 纳米。平均长度为 437.8 纳米，平均宽度为 5.7 纳米。这表明 CNFs 的宽度在一定范围内比较均

匀。整体来看，CNFs 的长宽分布呈现出一定的变化，具有较好的结构分散性和均匀性。 
 

 
Figure 1. SEM images of CNFs at ×100 μm and ×20 μm (a), (b); Length and width distribution histogram of CNFs (c), (d) 
obtained by Image J 
图 1. CNFs 的 SEM 图像，放大倍数为×100 μm 和×20 μm (a)，(b)；通过 Image J 获得的 CNFs 长宽分布直方图(c)，(d) 

3.2. 孔结构特征与形成机制 

3.2.1. 比表面积与孔隙率 
多点 BET 分析显示，水葫芦基 CNFs 比表面积 0.043 ± 0.002 m2/g，虽低于酸水解法纤维素纳米晶
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(150~200 m2/g)，但显著高于未处理纤维(0.012 ± 0.001 m2/g)，增幅 258%，且优于木材基 CNFs (0.038 ± 
0.002 m2/g) [1]。差异原因为 KOH 溶液主要去除半纤维素与木质素，对纤维素结晶区影响小，未充分暴

露吸附位点，同时三级研磨仅实现纤维横向切断，未形成大量端面微孔。另外，10.7% ± 0.5%残留木质素

覆盖纤维表面，堵塞部分孔隙。BET 方程 C 常数 68.534 (>50)，表明 N₂与纤维表面吸附作用力强，源于

纤维素羟基与 N₂的氢键作用，与 Abe 等(2009)报道一致[2]。 
图 2 为材料的氮气吸附–脱附等温线，属于Ⅳ型等温线，在相对压力(p/p0)高区间(p/p0 > 0.8)吸附量

急剧上升，且吸附支与脱附支存在明显滞后环，表明材料具有介孔结构(2~50 nm)。滞后环的类型可反映

孔的几何形状，结合曲线特征推测为狭缝型孔，这种孔结构常见于纤维素基纳米材料经机械解离或化学

处理后的产物[10]。 
 

 
Figure 2. BJH mesopore distribution curve of water hyacinth-based CNFs 
图 2. N2 吸附–脱附等温线曲线 

3.2.2. 孔径分布与多级结构 
如图 3 所示，孔径分布曲线(图 3)表明，从 1 nm 延伸至 80 nm 的宽谱分布并以约 20 nm 处为峰值，

样品以介孔(2~50 nm)为主，兼具少量大孔。这种层次化孔道可能由纤维束间隙与制备过程中形成的宏观

空隙共同贡献，有利于溶质扩散与传质(尤其对较大有机分子或颗粒物)，对吸附、催化载体、离子传输等

应用是有利的。 

3.3. 傅里叶变换红外光谱分析 

水葫芦基 CNFs 的傅里叶变换红外光谱图关键官能团峰变化如图 4 所示，1750 cm⁻1 和 1250 cm⁻1 的

峰值分别对应于木质素和半纤维素中的羰基(C=O)伸缩振动，以及木质素芳香醚键中的 C-O-C 振动。在

1030 cm⁻1 的带状吸收峰归因于吡喃环框架中 C-O 伸缩。位于 3337 cm⁻1 和 1630 cm⁻1 的吸收峰分别与纤

维素 O-H 基团的伸缩和弯曲振动相关。最后，2923 cm⁻1 的峰值对应于 C-H 键的伸缩振动。值得注意的

是 1750 cm⁻1 处出现了一个额外的吸收峰。这是由于 TEMPO 氧化引入的羰基所致，表明纤维素中 C6 羟

基被转化为羧酸根离子。光谱中仅出现一个小峰，表明这一反应选择性地氧化了 C6 位的初级羟基。 
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Figure 3. BJH mesopore distribution curve of water hyacinth-based CNFs 
图 3. 水葫芦基 CNFs 的 BJH 介孔分布曲线 

 

 
Figure 4. FTIR transmittances of CNFs 
图 4. CNFs 的 FTIR 图 

3.4. 工艺对比与优势 

与传统木材基 CNFs 工艺对比如表 1 所示，水葫芦基工艺绿色性与经济性优势显著是试剂用量减少

60%、处理时间缩短 75%、能耗降低 40%、原料成本降低 91%。 
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Table 1. Comparison of key process indicators between water hyacinth-based and traditional wood-based CNFs 
表 1. 水葫芦基与传统木材基 CNFs 工艺关键指标对比 

工艺指标 传统木材基工艺 水葫芦基工艺 优化率 
化学试剂用量 500 ± 20 kg/吨 CNFs 200 ± 10 kg/吨 CNFs ↓60% 
处理时间 48~72 h 12 ± 1 h ↓75% 
能耗 200 ± 15 kWh/吨 120 ± 8 kWh/吨 ↓40% 

原料成本 2000 ± 150 元/吨 180 ± 10 元/吨 ↓91% 

注：传统工艺数据来源于《纤维素纳米材料制备技术手册》(2022)，对比基于 1 吨 CNFs 产量。 

4. 结论与展望 

4.1. 结论 

此条件下木质素脱除率 89.3% ± 1.2%，纤维素保留率 76.5% ± 0.8%。工艺优化是“4 wt% KOH 碱处

理(90℃，2 h，2 次) + 三级机械研磨”工艺，成功制备直径 20~50 nm 的水葫芦基 CNFs，木质素脱除率

89.3%，纤维素保留率 76.5%，较传统工艺减少 60%试剂、降低 40%能耗。结构–性能机制是 CNFs 具有

“15.72~28.05 nm 介孔 + 1.416 nm 微孔”多级结构。具有较高的应用潜力，兼具经济与环境效益。 

4.2. 展望 

介孔功能化是通过 APTES 氨基化、马来酸酐羧基化，在介孔表面引入螯合基团，目标将 Cr2+、Pb2+

吸附容量提升至 100 mg/g 以上，循环次数 > 5 次。孔结构调控是探索超临界 CO₂干燥技术(40˚C, 10 MPa)
减少孔道坍塌，目标介孔分布窄化至 18~25 nm，微孔占比 12%，提升过滤选择性(油截留率 > 99.95%)与
复合材料强度(70 MPa)。标准与应用拓展是联合行业协会制定水葫芦基 CNFs 原料、工艺、性能行业标

准；推动应用至食品包装(氧气透过率 < 50 cm3/(m2∙24h∙atm))、生物医用(细胞相容性 > 95%)领域。 
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