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摘  要 

叶面积指数对描述植被生长状况和冠层结构信息具有重要作用，同时作为森林碳循环模型的输入参数，

对于森林碳循环研究也具有重要作用。本文就叶面积指数的测量方法及不同方法中存在的问题进行探讨，

以期为准确获取叶面积指数提供依据。 
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Abstract 
Leaf area index plays an important role in describing vegetation growth conditions and canopy 
structure information. At the same time, as an input parameter for forest carbon cycle models, it is 
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also important for forest carbon cycle research. This article discusses the measurement methods of 
leaf area index and the problems existing in different methods, in order to provide a basis for accu-
rately obtaining the leaf area index. 
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1. 引言 

叶面积指数(Leaf area index, LAI)是指叶子表面积在单位水平林地面积上的二分之一[1] [2]。叶面积

指数是分析冠层结构和植被状态的重要生态指标，能够衡量大气与陆地生态系统的相互作用，同时也是

定量研究土壤–植被–大气传输系统中能量和物质平衡的重要输入参数，它被广泛应用于许多领域，如

农学、生态学和林业[3]-[5]。在森林碳循环模型的研究中，叶面积指数也是重要的输入参数之一。因此，

无论是对于研究森林碳循环，还是现代林业发展，准确测量森林叶面积指数都具有十分重要的意义。本

文总结了叶面积指数的地面测量和遥感反演方法，并说明不同方法获取叶面积指数存在的问题，并提出

未来的研究方向。 

2. 地面测量叶面积指数的方法 

2.1. 直接测量法 

直接测量法得到的叶面积指数精度较高，能代表真实的叶面积指数，可用于验证光学仪器测量以及遥

感反演的叶面积指数，直接测量法主要包括破坏性取样法、异速生长方程法、点斜样方法和凋落物法[6]-[8]。
破坏性取样法和异速生长方程法对植被造成破坏，并且异速生长方程法受到林分结构特征的影响，此外，

点斜样方法需要大量样本以确保测量的准确性，凋落物法常用于落叶林的叶面积指数测量，可以实现季节

动态的叶面积指数监测[9]。因此，对于小区域森林的叶面积指数测量，可以采用直接测量的方法。 

2.2. 光学仪器测量法 

用于测量叶面积指数的主要光学仪器有 LAI-2200、AccuPAR、DEMON 和 TRAC 等仪器[10]-[14]。
基于贝尔定律，通过测量冠层孔隙率进而反算叶面积指数。叶片倾角的分布会影响光学仪器对叶面积指

数的测量[15]，此外，LAI-2200、AccuPAR、DEMON 这三种光学仪器无法获取树冠尺度和叶片尺度的聚

集效应[16]-[19]，这三种光学仪器测量的叶面积指数通常指的是有效叶面积指数[20]-[22]，TRAC 仪器则

能够在测量叶面积指数的同时获取叶片尺度的聚集效应，然而，TRAC 仪器无法获取到树冠尺度和针叶

簇内的聚集效应，因此，TRAC 仪器测量的叶面积指数也需要校正。 
不同地面测量叶面积指数的方法具有不同的优缺点，见表 1。 

3. 遥感反演叶面积指数的方法 

3.1. 被动遥感反演法 

被动遥感反演法是基于光学遥感影像，采用统计模型、机器学习模型或物理模型进行反演叶面积指数。 
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Table 1. Comparison of advantages and disadvantages of different ground-based leaf area index measurement methods 
表 1. 不同叶面积指数地面测量方法的优缺点对比 

地面测量方法 优点 缺点 

破坏性取样法 测量精度高，能够代表真实叶面积指数，

可作为间接测定值的校验手段。 
费时费力，对植被具有破坏性，难以用于具有高大复

杂冠层结构的森林叶面积指数的测量，适用于农田或

者草原植被的叶面积指数测量，也不适用于叶面积指

数的动态监测。 

异速生长方程法 测量精度高，能够代表真实叶面积指数，

可作为间接测定值的校验手段。 
对植被具有破坏性，受到如林龄、树种等林分结构特

征的影响。 

点斜样方法 测量精度高，能够代表真实叶面积指数，

可作为间接测定值的校验手段。 
对植被造成破坏，并且需要大量样本数量以保证测量

的准确度，难以用于较高的森林冠层的叶面积指数的

季节动态监测。 

凋落物法 测量精度高，能够代表真实叶面积指数，

可作为间接测定值的校验手段，能够实现

落叶季节的森林叶面积指数的动态监测。 

耗时耗力，无法获得生长季森林叶面积指数的动态监

测，且仅适用于小区域的森林叶面积指数的测量。 

LAI-2200 操作简便，对植被没有破坏性。 叶倾角的不同空间分布会影响叶面积指数的测量，难

以分辨木质部和叶子部分，无法获取叶片尺度以及树

冠尺度的聚集效应。 

AccuPAR 操作简便，对植被没有破坏性。 叶倾角的不同空间分布会影响叶面积指数的测量，难

以分辨木质部和叶子部分，无法获取叶片尺度以及树

冠尺度的聚集效应。 

DEMON 操作简便，对植被没有破坏性。 叶倾角的不同空间分布会影响叶面积指数的测量，难

以分辨木质部和叶子部分，无法获取叶片尺度以及树

冠尺度的聚集效应。 

TRAC 操作简便，对植被没有破坏性，能够测量

叶片尺度的聚集效应。 
叶倾角的不同空间分布会影响叶面积指数的测量，难

以分辨木质部和叶子部分，无法获取树冠尺度的聚集

效应，对于针叶树种，无法获取针叶簇内的聚集效应。 

 
统计模型法是基于叶面积指数与各种遥感信息(包括遥感影像光谱信息、纹理信息和植被指数等)之

间的关系，建立统计模型，进而估算区域尺度的叶面积指数，统计模型法估算叶面积指数的精度受地理

环境要素和林分类型的影响。蔡雯洁在叶面积指数的估算研究中加入地理环境因子，发现叶面积指数估

算精度有所提高[23]。包广道在针对长白山区 4 种针叶林有效叶面积指数进行遥感精细化反演的研究中，

发现区分林型构建不同林型下的叶面积指数估算模型可以提高精度[24]。基于原始光谱的微分变换可以

丰富光谱信息，传统的统计回归模型加入光谱变换可以提高叶面积指数的估算精度，该方法适用于高光

谱遥感反演[25]。 
常用的机器学习方法有 BP 神经网络(BPNN)、随机森林(RF)、支持向量机(SVM)和 XGBoost 等[26]。

付波霖采用 6 种机器学习法对广西北部湾红树林的叶面积指数进行估算，发现基于 XGBoost 算法的叶面

积指数估算精度更高[27]。焦亚辉采用多元线性回归模型和 3 种机器学习模型，以新疆阿克苏乌什县为研

究区域，基于树高和 11 种植被指数，构建了沙棘树的叶面积指数估算模型，发现支持向量机(SVM)模型

精度最高，且主成分分析预处理提高了模型的精度和稳定性[28]。 
物理模型主要是指辐射传输模型[29]，PROSAIL 模型是常见的一维辐射传输模型，PROSAIL 模型耦

合了 PROSPECT 叶片反射率模型和 SAIL 冠层辐射传输模型，PROSPECT 叶片反射率模型模拟不同生化

参数条件下，阔叶叶片在 400~2500 nm 光谱范围内的半球反射率与透过率，SAIL 冠层辐射传输模型能够

模拟不同太阳入射角和观测方向的森林冠层反射率与透射率。何金有采用人工神经网络模型和 PROSAIL
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模型反演凉水实验林场的森林冠层叶面积指数，研究表明 PROSAIL模型反演叶面积指数的精度更高[30]。
DART 模型和 LESS 模型是目前常用的三维辐射传输模型，主要是通过模拟真实的三维冠层结构，刻画

冠层内光线的传输过程，提取模拟数据集，融合实测数据，并结合机器学习模型法建立叶面积指数的估

算模型。研究表明与一维辐射传输模型相比，该方法反演叶面积指数的精度有了显著提高，性能更好[31]-
[33]。几何光学模型也可用于反演叶面积指数，几何光学模型能够描述离散植被与电磁辐射的相互作用。

已有研究表明，GOST2 模型(考虑叶片聚集效应)比 4SAIL 模型(不考虑叶片聚集效应)反演叶面积指数的

精度更高[34]。 
目前，物理模型结合机器学习法是反演叶面积指数的主流算法，三维辐射传输模型结合机器学习法

反演叶面积指数的精度更高[31]-[33]。主要原因是传统的一维辐射传输模型假设冠层内的叶片是水平均

匀分布的，不考虑冠层高度、叶片结构等参数，而实际的森林冠层叶片不都是水平分布的，三维辐射传

输模型采用 Monte Carlo 光线追踪算法和辐射传输算法，能够模拟真实的三维森林场景，如 DART 模型

和 LESS 模型。DART 模型通过模拟三维森林场景和冠层反射率，可生成可见光和近红外波段的植被冠

层遥感影像，LESS 模型能够模拟多角度冠层反射率，生成多光谱遥感影像和鱼眼相机数据。经三维辐射

传输模型模拟真实森林场景后提取的仿真数据集，结合机器学习法建立叶面积指数反演模型的精度更高，

主要原因与传统的统计模型相比，机器学习模型能够更高的解释变量因子间的关系。 

3.2. 主动遥感反演法 

由于光学遥感数据估算叶面积指数存在“光饱和”现象，所以 LiDAR 和合成孔径雷达 SAR 数据大

量应用于叶面积指数的反演。可采用统计模型法或物理模型法，基于 LiDAR 数据反演叶面积指数[35]。
统计模型法可以利用 LiDAR 数据提取激光穿透指数 LPI，并基于贝尔定律逆推出叶面积指数[36]，还可

以利用 LiDAR 数据提取冠层覆盖度、树冠体积、冠层高度和平均胸径等参数，建立多元统计模型来反演

叶面积指数[37]。物理模型法是先采用三维辐射传输模型精确模拟森林冠层与 LiDAR 脉冲的相互作用，

进而反演叶面积指数[38]。SAR 可以全天时全天候获取数据，SAR 反演叶面积指数的方法主要是基于后

向散射系数建立经验回归反演模型，SAR 数据也可以与光学遥感影像协同使用反演叶面积指数，反演精

度较单个数据集有所提高[39]。 
遥感反演叶面积指数的技术路线流程见图 1。 

4. 现有 LAI 产品 

目前已有多个全球 LAI 产品，包括 MODIS [40]，NOAA CDR LAI [41]，CYCLOPES [42]，GEOV1 
[43]，GLOBALBNU [44]，GLOBMAP [45]以及 GLASS [46]等。具体参数见表 2。MODIS 和 GLASS 的

LAI 产品由于可以全球覆盖、长时间序列以及相对较高的空间分辨率，得到最为广泛的应用。有研究表

明，对于中国地区，GLASS LAI 产品表现最佳，MODIS LAI 产品表现最差，并且不同流域、不同土地利

用类型和高程都会影响 LAI 值[47] [48]。已有研究提出一种时序深度模型，基于 GLASS LAI/FAPAR 和

30m 空间分辨率的土地利用数据生成的代表性样本，融合 Sentinel-2 和 Landsat-8/9 时序观测数据，联合

生成空间分辨率为 20 m、时间分辨率为 5 day 的无缺失 LAI/FPAR 产品，命名为全球陆表卫星(Hi-GLASS) 
LS20 LAI/FAPAR，该产品通过了 29 个验证站点的 4046 组实测数据验证，LAI 的 R2 和 RMSE 分别为

0.79 和 1.0，生成首套 2018~2023 年 20 m 无空缺 LAI/FAPAR 产品[49]。另外，有研究采用 Sentinel-2 协

同 Landsat-8 数据，生成了 2023 年中国区域内湿地植被的叶面积指数分布图，空间分辨率为 10 m，精度

远高于 MODIS LAI 和 HiQ LAI 产品[50]。说明了 Sentinel-2 数据在生成高分辨率 LAI 产品方面的研究中

具有很好的潜力。 
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Figure 1. Flowchart of remote sensing inversion for leaf area index 
图 1. 遥感反演叶面积指数技术路线流程图 

 
Table 2. Some parameters of global LAI products 
表 2. 部分全球 LAI 产品参数信息 

产品 传感器 覆盖范围 空间分辨率 时间分辨率 时间跨度 反演算法 

MODIS LAI MODIS 全球 500 m 8 day 2000 年至今 三维辐射传输

模型 + 查找表 

NOAA CDR 
LAI 

AVHRR 全球 0.05˚ 1 day 1981 年至今 神经网络 

CYCLOPES SPOT/VEGETATION 全球 1/112˚ 10 day 1999~2007
年 

一维辐射传输

模型 + 神经网

络 

GEVO1 SPOT/VEGETATION, 
MODIS 

全球 1/112˚ 10 day 1999~2013
年 

神经网络 

GLOBALB 
NU 

MODIS 全球 1 km 8 day 2000~2016
年 

时空滤波 

GLOBMAP MODIS/AVHRR 全球 8 km (1981~1999
年)/500m (2000 至

今) 

15 d (1981~1999
年)/8d (2000 至

今) 

1981 年至今 经验植被指数 

GLASS LAI SPOT/VEGETATION,
MODIS 

全球 0.05°/1 km 8 day 1981 年至今 广义回归模型 
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5. 地面实测数据验证遥感反演的叶面积指数及 LAI 产品 

地面实测数据验证遥感反演的叶面积指数及 LAI 产品主要采用直接法，直接法也是获取 LAI 产品绝

对精度的主要评价方式。对于不同空间分辨率的 LAI 产品，验证方法也有所不同。对于高空间分辨率的

叶面积指数遥感产品，如基于 Sentinel-2 和 Landsat-8/9 数据反演得到的 LAI 产品，空间分辨率小于或等

于 30 m，可以在地面设置影像像元大小的实测样地，在样地内设置测点测量植被的叶面积指数，通过简

单平均法得到样地的植被叶面积指数，样地观测直接对应 LAI 遥感产品像元尺度进行验证[51] [52]。对

于中低分辨率的叶面积指数遥感产品，即空间分辨率为 500 m 或低于 500 m，像元面积较大，植被存在

空间异质性，所以常借助于高空间分辨率影像，通过高分辨率影像获取中低分辨率影像像元尺度内的地

物空间异质性，生成高分辨率的 LAI 产品，将高分辨率的 LAI 产品降尺度到中低空间分辨率 LAI 产品尺

度，验证中低分辨率 LAI 产品的精度[53]。 

6. 结语 

目前主要可通过直接测量和遥感反演方法两种方法来获取森林叶面积指数，不同方法之前存在差异，

LiDAR 结合三维辐射传输模型反演森林叶面积指数的方法已展示了极大的潜力，光学遥感协同主动遥感

反演叶面积指数可以提高叶面积指数的反演精度，LAI 产品还可以用于获取大区域的森林叶面积指数。

未来的研究需要探索多源数据协同反演叶面积指数的方法，充分利用各种改进优化的模型产品，为获取

高精度的森林叶面积指数提供服务。 
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