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Abstract

To investigate the migration characteristics of pollutants in the vadose zone-aquifer system, this
paper takes fluoride in phosphogypsum leachate as the research object. A coupled numerical model
for pollutant migration in the vadose zone-aquifer system was established to simulate and analyze
the migration laws of pollutants during different stacking periods of phosphogypsum. The results
show that: the vadose zone exerts varying retardation effects on the vertical migration of pollutants,
which effectively reduces the concentration of pollutants entering the aquifer in the initial stage; in
the rainy season, the horizontal migration direction of pollutants in the aquifer is complex, accom-
panied by faster migration rate and larger pollution scope, leading to high difficulty in pollution
control and remediation; in the dry season, the migration direction of pollutants is relatively single,
showing a slower migration rate and smaller diffusion range, whereas the cumulative degree of pol-
lutants in the aquifer is higher, resulting in higher pollutant concentration, which is not conducive
to pollutant diffusion, but the difficulty of pollution control and remediation is relatively lower. The
research findings provide a scientific basis for water pollution control and risk management in the
vadose zone-aquifer system.
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Figure 1. Topographic map of the study area
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Figure 2. Two-dimensional horizontal aquifer model of the study area
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Figure 3. Vadose zone-aquifer coupling model
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Figure 4. Water level fitting curve in the study area
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Figure 6. Water level change map of aquifer profile in the study area
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Figure 11. Pollutant concentration breakthrough curve at observation point
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