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Abstract

Intracranial aneurysm (IA) is a pathological lesion characterized by localized abnormal dilation of
the intracranial arterial wall, resulting from structural abnormalities or mechanical homeostasis
imbalance. Most patients exhibit no obvious symptoms in the early stage; however, rupture of IA
tends to induce life-threatening complications such as subarachnoid hemorrhage, leading to high
mortality and morbidity rates. In-depth investigation into the hemodynamic mechanisms of IA holds
significant implications for rupture risk assessment and the formulation of intervention strategies.
This study employs computational fluid dynamics (CFD) technology and is based on the geometric
model of tumor-bearing vessels. By discretizing and solving the Navier-Stokes equations using the
finite volume method (FVM), numerical simulations of the hemodynamic characteristics within the
aneurysm sac were conducted under physiological pulsatile flow conditions. Key hemodynamic pa-
rameters including blood flow recirculation, velocity field distribution patterns, wall pressure, and
wall shear stress (WSS) were analyzed to explore the inducing mechanisms and critical influencing
factors of flow disturbance in the aneurysm sac. The numerical simulation results demonstrate that
there are significant blood flow recirculation zones within the aneurysm sac. The flow separation
effect and the formation of complex vortex structures further exacerbate local flow instability. The
spatial distribution of low WSS regions and blood flow stasis zones shows a high correlation with
the prone-to-rupture sites of the aneurysm.
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P P 0 FTRE (LA 1 B A 2 S v A ML 4 S IX SR B kIR )15 50 Bk D0 B 5 18 (00 e s gy o %
B M R AT MR BN 15508, R T RS B EEANMA1]-[3], R [4]. &3k
FA[S] (AR TE . ZEAR. BRI K I 2SR MR SRR . TSR AA 1124 (CFDRE L R H T CL7E M s)
FI TSRS B2 e SR, ReiE i shah . B BEH I 77 BT V)R (WSS S5 XK it 5
BRI TS, HAT B B R BANRAY: — RS A (6], 7 —JRI T B
FVEIMAS RGN B ST 7], ST LR SN J1 2 S 50T NIRRT T SR Al $e it 2 22%, CFD &
BN BN IR ML AT ) E R AR i, A DS AR nT SE I B SRR . i, Cebral &5 i £k
M TG 52 (DSA ) B BT I 57 I T DA 7 il Y BEIR 20 ko N IR LI 4544, 7E 15 481 o 3 P 263 Ak 7
Hi, CFD B45 R 5 DSA W g i — 8k 78% [8]: Xiang Z24& W T MR Bh 112 S BAE SN koM
T RIS PPy o ) S PR B, 5 SRR B BE T B S I 5 (1) CFD A0 mI A5 R80T 20 Jok R e 2 XU (9] o
Bauer %5 NEXHRIE IR, R FH kBt 5 ik S wip L 77 28 70 B BE VI R. /) (WSS) 7 AR AE, Wt 7i4h
4 CFD Bl SR IRITE(MRV) BOE 2 80 (LDV) SR 525 777k, UESE CFD 5 LDV Kl 25 5w
Wi, [EIET RIS TR B WSS BB 28 70 A B 520, WSS SR AE I TR 46 4 i X 35,
HL B i A5k X8 R sh i I X (29 - S 36 X)) R BN E IR sh[10].
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SEROR, ZEE SR I A IR TR I PR ERR,  HLJR R DI BE T D)8 ) (WSS) 3 T a3k
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FH DY FAN [ 75 5 £ (Re = 1, 100, 500, 1000)%} [F] — 15843847 CFD Bl &5 SR, MERGEEIN A, ik
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2.1. EHEIGFEFARFHRE
MRS 3 WS 4 R Navier-Stokes FFE#s ], HErRER T

op_olpu) olew) a(pu)_,

ot ox oy oz .
a(’g:l") +V~(puxﬁ):—g—i+ a;;x + 6;; +6;: +F,
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F KR, ThRF BRI RWoT iR R 15
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JIARIRZE RENEAZRIAE 2% VG 2 N o ASSCHEFTRIATA SBK R T K3k, MU NARZ KT 0.5 mm. LA
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Figure 1. Unsteady boundary conditions
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AHEFUf# F Fluent Meshing (ANSYS A, FEE)AE ARG AL R AR, %5 T BE T AH 5SS 507
VAR J 1B 5 A IR B, AHI FUE X R AR AR SR R B Rl 43T 5+ VLA R R O X B FH N THT AR R A
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3. ZR5ITR
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Figure 2. Mesh model
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Figure 3. Distribution positions of each observation point on the surface of tumor-bearing vessels
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Figure 4. Velocity streamline diagram of tumor-bearing vessels over one cardiac cycle
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Figure 5. Contour plots of velocity distribution and vector diagrams of velocity distribution on two planes in the aneurysm
lumen
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Figure 6. Characteristic curves of velocity variation with time at each observation point
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Figure 7. The wall pressure distribution cloud diagram of tumor-bearing vessels over one cardiac cycle
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Figure 8. WSS distribution cloud diagram of tumor-bearing vessels over one cardiac cycle
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Figure 9. WSS distribution cloud of tumor-bearing vessels
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Figure 10. Characteristic curves of dynamic variation of WSS values at each observation point over time
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