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Abstract

To reveal the regulatory mechanism of time-fractional dynamics on the natural convection behav-
ior of Newtonian fluids, this study incorporates the time-fractional derivative into the governing
equations of fluid free convection. Combined with phase plane analysis, numerical simulations and
a Mathematica-based parameterized algorithm (generating 104 sample points for each pair of con-
trol parameters) are employed to systematically investigate the effects of fractional characteristics
on fluid stability and key physical quantities. The results show that the nonlocal property and
memory effect of the time-fractional derivative can significantly enhance system instability, leading
to complex convection patterns characterized by unstable oscillations; the wall shear stress and
Nusselt number of Newtonian fluids decrease with the reduction of the fractional parameter (« )
and increase with the rise of the power-law index; the established algorithm and analytical method
realize the accurate delineation of stable/unstable regions. This study improves the theoretical
framework of complex fluid systems, deepens the understanding of the impacts of memory effect
and anomalous diffusion on fluid stability and chaos transition, and provides theoretical support
and new perspectives for the control and optimization in various engineering and industrial appli-
cations involving Newtonian fluids.
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Figure 1. Model of stokes’ second problem
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Figure 2. Stable and unstable regions under different boundary conditions
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Figure 3. Effect of fractional-order parameters on the phase portraits of Newtonian fluids
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Figure 4. Effect of fractional-order parameters on wall shear stress
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Figure 5. Effect of fractional-order parameters on heat transfer rate
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