工程决策方法如何优化司法裁判?

以396份公共安全视频监控判决书为例

陈德强1、郑 洁2

1华东政法大学刑事法学院,上海 2东华大学数学系,上海

收稿日期: 2025年10月18日: 录用日期: 2025年11月12日: 发布日期: 2025年11月21日

摘 要

司法裁判面临法律适用条件结构性模糊的困境。为探索工程决策方法如何优化司法裁判,本研究以396 份公共安全视频监控判决书为实证样本,引入DEMATEL-AHP混合模型进行系统分析。研究构建了"法 律要件解构-数据挖掘-因果识别-权重测度"的工程化路径,将抽象法律问题转化为可计算的结构化 模型。实证结果显示: 法律适用系统呈现"程序驱动实体"的网络结构, 其中程序合规性虽仅占问题比 例的5.56%, 却是关键驱动要素(原因度2.6574)。本研究证实工程决策方法能通过量化要素关联、识别 隐性因果关系、优化权重分配三大路径优化司法裁判,为提升裁判一致性提供了可操作的方法论框架。

关键词

工程决策方法,司法裁判,DEMATEL-AHP模型,计算法学

How Engineering Decision-Making Methods Optimize Judicial Decisions?

-Evidence from 396 Public Safety Video Surveillance Cases

Degiang Chen¹, Jie Zheng²

¹Criminal Law School, East China University of Political Science and Law, Shanghai

Received: October 18, 2025; accepted: November 12, 2025; published: November 21, 2025

Abstract

Judicial adjudication faces the dilemma of structural ambiguity in legal application conditions. To

文章引用: 陈德强, 郑洁. 工程决策方法如何优化司法裁判? [J]. 交叉科学快报, 2025, 9(6): 1010-1021.

DOI: 10.12677/isl.2025.96129

²Department of Mathematics, Donghua University, Shanghai

explore how engineering decision-making methods can optimize judicial adjudication, this study conducts a systematic analysis of 396 judgments concerning public safety video surveillance, employing a DEMATEL-AHP hybrid model. The research develops an engineering-based approach—"legal element deconstruction, data mining, causal identification, and weight measurement"—to transform abstract legal issues into computable structured models. Empirical results reveal that the legal application system exhibits a "procedure-driven substance" network structure. Within this network, procedural compliance, despite being contested in only 5.56% of cases, emerges as the key driving element (with a net causal effect of 2.6574). This study demonstrates that engineering decision-making methods can optimize judicial adjudication through three pathways: quantifying element correlations, identifying implicit causal relationships, and optimizing weight allocation, providing a practical methodological framework for enhancing adjudication consistency.

Keywords

Engineering Decision-Making Methods, Judicial Adjudication, DEMATEL-AHP Model, Computational Law

Copyright © 2025 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

法治体系完善进程中的核心追求是司法裁判的规范化。为了实现这个核心目标,国内的法学专家对此进行了多维度探讨。现代科技的不断发展为这个目标的实现既带来了机遇,也带来了挑战。例如,随着公共安全视频监控等新技术的发展,相应的治理问题也不断增加。法律规则的适用却出现了"结构性模糊"的困境:原则性的法律条文在具体案例中有多重解释,各构成要素间表述不一致,各种权重相关性缺乏准确的界定,最终导致在具体司法实践中裁判标准的不统一。这种模糊性对规范执法以及公民的隐私保护形成了一定的制约,更是导致执法裁量权失衡的重要因素。

针对此问题,现有的文献从多个维度进行了探讨。国内学者如陈君武、刘达洲等[1],从具体实践出发,对视频监控法律规则适用条件的问题进行了探讨,但是多数讨论主要还是侧重于实务以及政策层面的研究,缺乏对大量司法实践中规律的系统性挖掘。国外学者如 BRAYNE S. [2]认为传统的"公共场所"监控实际上渗透到了对个人生活的观测,使得公私空间领域的界限模糊化,并给出了一定的实证分析。研究虽然指出了具体的问题,但在分析法律规则内部的复杂因果机制方面,缺乏有效的量化分析工具[3]。

为了进一步推动利用交叉学科的方法解决新问题,本研究借鉴工程决策的方法来进行突破,其核心问题就是:工程决策方法如何为司法裁判提供新的分析范式与优化路径?为此,本研究引入了计算法学视角,尝试构建一条连接工程学与法学的交叉研究路径,进行相关问题的科学分析。该方法的核心是将抽象的法律适用条件视为一个可供解析的复杂系统,通过"法律要件解构-司法数据挖掘-因果机制识别-权重关系测度-混合模型构建"的整套工程流程,将其转化为一个可计算、可验证的结构化问题。

与依赖专家主观判断的传统方法不同,本研究突破性地以公开的 396 份公共安全视频监控判决书为 实证数据,通过提取其中蕴含的法律要素,构建了一个法律要素间的影响关系矩阵。这种将研究的具体 问题与真实的司法实践数据相结合的方法,更具有代表性和可解释性。

在此基础上,本研究致力于融合工程决策中的 DEMATEL (Decision-Making Trial and Evaluation Laboratory)与 AHP (Analytic Hierarchy Process)等方法,构建一个能够揭示因果驱动关系和要素权重的综合

决策模型。本研究将为公共安全视频监控的法律规制提供一套动态的评估框架,更期望能成为方法论上的示范,探索工程决策方法优化司法裁判[4]。

2. 计算法学与法律规则的量化分析

2.1. 作为交叉学科桥梁的计算法学

计算法学方法是一种全新的法学研究方法,但它并不是计算机技术与法学的简单交叉。其核心创新是推动了法学研究范式的根本性的转变,即利用计算思维的逻辑框架,对法学问题进行严格的解析和重构。它通过大数据方法和人工智能算法进行法律数据挖掘,建立相关的模型进行仿真,最终将计算所得到的结论回归到法律实践当中进行再验证。这种范式以"分解、抽象、算法、建模"为基本路径,将复杂的法学问题转化为可计算、可验证的结构化问题。具体到本研究中,为了回答"工程决策方法如何优化司法裁判"这一问题,这一范式就具体体现为"法律文本解构-司法数据挖掘-因果识别-权重测度-混合模型"这样一条完整的技术路径。

在具体的研究过程当中,我们将宏观的法学问题拆解为多个可操作的子问题。例如,在公共安全视频监控适用条件的问题上,将其分解为目的正当性、手段必要性、程序合规性和利益均衡性等多个维度。通过分析法律大数据,提取这些核心维度的基本特征,并将这种特征转化为可计算的特征矩阵,从而将所研究的法学问题转化为结构化的数据分析。对于这些收集整理好的数据,我们再利用算法进行模拟推演和计算,最终得出结论。整个过程要力求具备可重复性和可溯源性,利用工程决策方法对原法学问题给出科学的解答。

本研究将计算法学和实证研究相结合,通过挖掘公开的法院判决文书,获取要素的关联规律,构建符合法学逻辑的因果模型。这种创新方法不仅能够提升法学问题分析的客观性,而且能够对问题当中的模糊性以及矛盾冲突进行科学的刻画和解析。

2.2. 法律适用条件的解构与量化基础

在公共安全视频监控的问题探讨当中,本研究发现相关法律的适用条件虽然有模糊性,但是仍然可以发现其中的相关规律痕迹。通过调研和阅读大量的公共安全视频监控相关的法规,发现里面有大量的结构化特征可供研究。具体来说,公共安全视频监控的适用条件可以进行分解,这其中包括四个主要相关联的核心要素:目的正当性(B1)要求安装监控要符合《公共安全视频图像信息系统管理条例》规定;手段必要性(B2)要求监控摄像范围要在实现目的前提下对隐私侵害最小;程序合规性(B3)要求安装监控过程要符合申请、审批、公示等法定程序;利益均衡性(B4)要求在公共利益与个人隐私之间进行均衡,使得安全效益要大于隐私侵害。这几个要素构成了本研究运用混合模型进行量化分析的基石。

以公交站安装人脸识别监控这一场景为例,这四个要素在判断其合法性的过程当中起到了关键作用。 具体表现为:监控的目的是否是用于公共安全,识别范围是不是侵犯乘客隐私的最小集,安装使用程序 上是否合法合规,在公交安全效益和乘客隐私影响之间是否均衡[5]。通过以上四个要素的研究,可以把 原来模糊的适用条件转化为可以分析的统一结构。

这一解构过程具有坚实的法理基础。比例原则中的必要性和均衡性子原则,分别与本研究中的手段必要性(B2)和利益均衡性(B4)相对应。而要素目的正当性(B1)正是比例原则适用的前提条件。程序合规性(B3)则是依法行政原则的重要体现,它们共同构成了比例原则应用的完整框架。这种对应关系确保了后续的工程决策分析能够映射法学问题的内在逻辑[6]。

2.3. 工程决策方法的引入与适配性

本研究选择 DEMATEL 与 AHP 这两种源于工程决策领域的方法进行混合组合。这对组合对研究法

律适用条件模糊性的适配性高。与本研究采用的混合方法相比,传统的统计方法对要素之间复杂的因果 网络关系刻画是静态的,而且各个要素之间的权重往往需要专家打分,具有较强的主观性,无法进行客 观的科学判断[7]。DEMATEL 方法可以进行动态的因果分析,从而将原有的静态研究范式转化为动态范式。例如,以往过于侧重程序合规性的研究,往往会导致利益均衡性的判断出现偏差。但现在利用 DEMATEL 方法可以动态的进行相关的研究,避免静态视角产生的偏差。

具体来讲,DEMATEL 方法对动态的因果分析较为擅长,善于刻画复杂的传导机制,并且将静态的研究范式转化为动态范式。而传统的 AHP 方法在权重确定上较为依赖专家主观的判断,容易受到个人经验和偏好的影响。因此,本研究创新性的将两者完美融合:首先利用 DEMATEL 方法来分析获取的大量的法律数据,揭示要素之间的相互因果关系。再将所得到的因果重要性作为影响因子,引入到 AHP 方法的权重计算过程之中。

这种"因果识别-权重测度"的混合策略,既保证了模型与法律推断逻辑的一致性,又融入了来自大规模司法实践的客观实证。这为破解法律适用条件的模糊性提供了一条"法学+工程科学"的研究路径。

3. 数据收集与模型构建

3.1. 司法数据源的构建与处理

本研究的数据获取自中国裁判文书网公开的判决书,合法收集到了 2018 年到 2023 年间通过初步检索获得的与公共安全视频监控相关的裁判文书 1247 份。通过仔细筛选,剔除重复、信息不完整的无效案件,最终得到了 396 份有效案件样本,涵盖 28 个省级行政区的相关案例。在数据的预处理阶段,本研究对相关的数据进行了严格的清洗,既快速剔除了无效数据,又保证了用于分析的数据的真实性。对其中的四个核心要素进行了状态标注。为了保证数据的一致性,本研究制定了统一的编码规则,这些严格的标准可能会导致部分边缘个案被排除在外,但确保了整体数据的一致性与可靠性。这套规范的司法数据处理流程,为后续运用工程决策方法进行建模夯实了数据基础。

3.2. 基于司法数据的要素影响矩阵构造

本研究创新性的从大量的司法数据当中推导要素之间的影响关系。通过统计大量判决书中的要素出现的频率来计算相关的条件概率。以手段必要性(B2)和利益均衡性(B4)的关系研究为例,在 169 个手段必要性不成立的案件当中,有 127 个案件同时存在着利益均衡性不成立的问题。计算后得到的条件概率达到了 75.1%。

为了进一步突出显著性检验机制,利用 Fisher 方法对每个条件概率进行进一步显著性检验。只有当显著性水平 p < 0.05 才认为获得的数据具有统计意义上的相关性。这使得获得的要素关系避免了随机波动的影响。根据法学领域中对影响强度的共识[8],将获得的显著条件概率映射到整数 0 到 4,此映射规则与工程决策中 DEMATEL 方法的通用标准相一致[9]: 当条件概率超过 0.75,要素之间存在极强的影响,将其映射为 4;概率在 0.5 到 0.75 之间认为是强烈影响,将其映射为 3;概率在 0.25 到 0.5 之间认为是中等影响,将其映射为 2;概率低于 0.25 的认为是微弱影响,将其映射为 1。这种映射关系构造的影响矩阵(如图 1),既体现了内在的数学逻辑,也符合法学问题中对影响强度的直观认知。为验证映射阈值的稳健性,本研究在后续章节(见 4.4 节)进行了专门的稳健性分析,最终显示所得到的核心结论与本阈值下所得结论保持一致。因此,这套从司法数据中挖掘因果逻辑的量化方法,正是工程决策方法优化司法裁判研究的具体体现。

仔细观察图 1 可以看出,利益均衡性(B4)被多个要素影响。以手段必要性(B2)、程序合规性(B3)对其影响均达到了 4.0。利益均衡性(B4)对手段必要性(B2)的反影响值为 3.0,这表明各个要素之间形成了一个

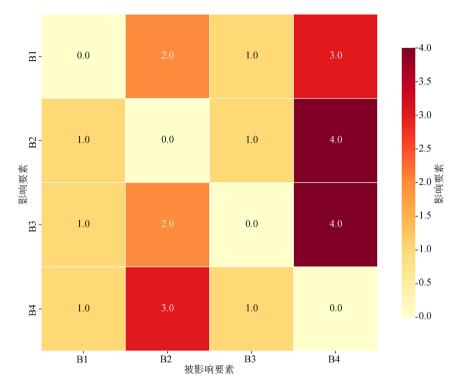


Figure 1. Legal elements direct influence matrix 图 1. 法律要素直接影响矩阵

3.3. 融合主客观权重的混合模型实现

混合模型的构建和应用是本研究的核心创新方法。传统的 AHP 方法依赖专家的主观打分来确定权重,而本研究中把 AHP 的各要素初始权重均设定为等值(0.25),这种设置方法是根据比例原则下各个法律要素应具有平等地位的法理基础。将这种设定作为基准权重而不采用专家打分确定权重。在此基础之上,本研究将通过分析获得的客观数据来进行后继的权重较准。在具体的研究过程当中,通过计算得到四个要素的中心度指标,这个指标能够反映四个要素在整个系统当中的重要性。将中心度进行归一化处理,得到了来自于采集的实证数据的权重向量。在权重融合过程当中,本研究引入参数 α (取 0.5)用来平衡主观判断与客观数据之间的关系。

这种设计既融入了法学领域的理论框架,又遵循了大数据司法实证过程当中的数据规律,使得最终的实验结果既具有理论的合理性,又具有实践的可行性。这种把工程决策模型和法学实证相结合的思路,展示了工程决策方法如何对司法裁判一致性的优化。

4. 实证分析与发现

4.1. 法律要素的实证分布特征

本研究共分析了396个有效的案例。从案件的类型分布来看,主要涉及隐私权纠纷,其占比为79.8%,公共安全视频监控管理类案件占20.2%。这种分布反映了当前公共安全视频监控争议集中在隐私保护领域,凸显了视频监控技术的发展与个人隐私保护的之间的矛盾。进一步地,本研究统计了上一节所涉及的四个法律要素在全部396个案件中的出现频率,并将出现案件数、问题案件数、问题比例进行了列表

展示,具体结果见表1。

Table 1. Descriptive statistics of legal elements

表 1. 法律要素描述性统计

要素	含义	出现案件数	问题案件数	问题比例
B1	目的正当性	396	62	15.66%
B2	手段必要性	396	173	43.69%
В3	程序合规性	396	22	5.56%
B4	利益均衡性	396	319	80.56%

通过观察表 1 可以发现,利益均衡性(B4)的问题比例(80.56%)远远高于其他要素。其次是手段必要性(B2)的问题比例次高(43.69%)。因此说明这两个要素是司法实践当中的争议焦点。目的正当性(B1)的问题比例较低(15.66%),说明在已公开的判决中,法院对公共安全视频监控的目的正当性普遍予以认可。问题比例最低的是程序合规性(B3),可见程序性问题并不是当前此类案件争议的核心。此次所得到的分布特征,为后续运用工程决策方法进行重点要素分析提供了明确导向。

4.2. 基于 DEMATEL 方法的系统视角分析

4.2.1. 综合影响矩阵分析

通过 DEMATEL 方法计算得到综合影响矩阵如表 2 所示,这个矩阵显示了四个要素之间的影响关系。

Table 2. Comprehensive influence matrix T 表 2. 综合影响矩阵 T

要素	B1	B2	В3	B4
B1	0.5961	1.4988	0.7211	1.9525
B2	0.7130	1.2685	0.7130	2.0092
В3	0.8021	1.6771	0.6771	2.2604
B4	0.6481	1.4259	0.6481	1.4630

本研究通过观察综合影响矩阵,发现 B1、B2、B3 这三个要素,对利益均衡性(B4)均有比较明显的影响作用。其中程序合规性(B3)对 B4 的影响最高达到了 2.2604,这说明程序合规性在利益均衡判断当中起关键性作用。B2 对 B4 的影响值是 2.0092, B1 对 B4 的影响值是 1.9525,这些都体现了这些要素在利益均衡中有重要的实际地位。

利益均衡性(B4)对其它三个要素也存在反向影响。其中对 B2 的影响值为 1.4259,对 B1 的影响值为 0.6481,对 B3 的影响值也是 0.6481。这种双向不对称的影响关系,使得四个要素在具体的司法实践当中形成了复杂的网络结构。B4 是其它三个要素综合作用的结果,同时 B4 又反过来影响其它三个要素的判断标准。

尤其值得注意的是,程序合规性(B3)不仅对利益均衡性(B4)有最强的影响,还对 B1 具有较高的影响值 1.6771。这从系统工程的角度印证了程序要素在整个法律适用系统中的基础驱动地位,揭示了"程序驱动实体"的复杂网络特征。

4.2.2. 中心度与原因度分析

综合影响矩阵 T 的各行元素之和为影响度(D),矩阵 T 各列元素之和为被影响度(C)。通过计算得到

四个要素的中心度(D+C)以及原因度(D-C), 计算结果见表 3。在研究过程中,发现中心度主要代表了四个要素在整体框架系统当中的重要程度, 而原因度则是为了区分各要素之间的因果属性。

Table 3. Centrality and causality of legal elements 表 3. 法律要素中心度与原因度

要素	影响度(D)	被影响度(C)	中心度(D+C)	原因度(D - C)
B1	4.7685	2.7592	7.5277	2.0092
B2	4.7037	5.8703	10.574	-1.1667
В3	5.4166	2.7592	8.1759	2.6574
B4	4.1852	7.6851	11.8703	-3.5000

通过观察表 3 可以发现,利益均衡性(B4)的中心度是最高的,其值为 11.8703。这表示,它是整个系统的核心要素。手段必要性(B2)的中心度是 10.5740。目的正当性(B1)和程序合规性(B3)的原因度都是正值,分别是 2.0092 和 2.6574。这说明它们属于原因要素,在系统当中可以起到基础驱动作用。B2 和 B4 的原因度为负值,分别是-1.1667 和-3.5000,这说明在因果属性上,它们更多地被看作系统中的作用结果。

程序合规性(B3)在实际案件问题统计中的比例比较低,只有 5.56%。但原因度却是最高的,它的值为 2.6574。这说明程序合规性对其它三个要素具有最强的基础性驱动作用,应该予以重点关注。目的正当性 (B1)的原因度也达到了 2.0092,这说明它在系统当中发挥基础驱动作用。

从影响关系角度来看,利益均衡性(B4)的被影响度最高,其值为7.6851。这说明它在整个系统当中受其它三个要素的影响比较多,在裁判中可以看作一个需要综合考量的关键因素。手段必要性(B2)的影响度与被影响度几乎相当,但它的原因度却为负值,这说明这个要素在系统当中受其它要素的影响比较大,并且能够起到一定的传导作用。表 3 的数据分析,进一步证明了在司法实践过程当中,四个要素之间呈现复杂的网络结构特征。程序合规性(B3)虽然争议比较少,但是它作为关键的驱动要素,尤其需要重视。本次发现凸显了工程决策分析方法在揭示表象之下深层驱动机制方面的独特优势——程序合规性虽很少成为诉讼争议点,却是影响整个系统运行的关键驱动因素。

4.2.3. 因果图分析

根据计算的中心度和原因度,本研究绘制了最终的 DEMATEL 因果图(如图 2)。

通过对图 2 进行分析,可以看出四个法律要素在公共安全视频监控法律的适用条件系统中呈现不同的分工和地位。利益均衡性(B4)和手段必要性(B2)在第四象限,利益均衡性(B4)的中心度最高,其值为11.8703。它是系统的核心结果要素。手段必要性(B2)的中心度次高,其值为10.5740。它是重要的结果要素,并且承担一定的传导作用。程序合规性(B3)和目的正当性(B1)在第二象限。程序合规性(B3)的中心度较低,其值为8.1759。但原因度却相对最高,其值为2.6574。因此,它是系统当中重要的基础驱动要素。目的正当性(B1)的原因度也是正值2.0092,它是系统的另一个重要的驱动要素。

这一因果图揭示了要素之间的复杂网络结构。目的正当性和程序合规性是共同驱动系统运行的原因要素,手段必要性和利益均衡性是结果要素。虽然程序合规性在实际中争议较少,但它作为最基础的强力驱动要素,通过传导影响其它要素,间接决定了案件的最终走向。本次基于工程决策方法的可视化分析,打破了"重实体、轻程序"的固有认知,为后继解释法律适用条件的内在机理提供了新的理论支撑。

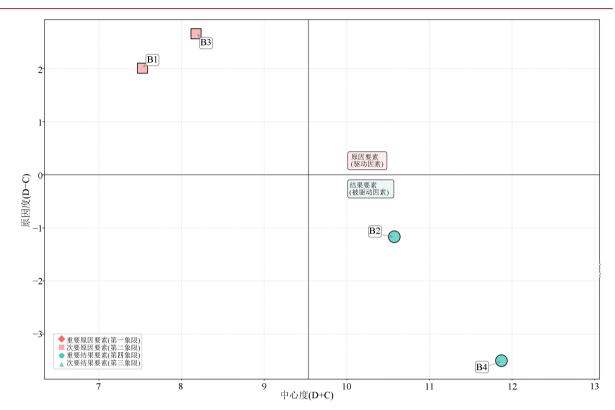


Figure 2. DEMATEL causal diagram **图 2.** DEMATEL 因果图

4.3. AHP 权重的测度与融合模型结果

4.3.1. AHP 层次结构与权重修正

本次研究构建的 AHP 层次结构具有四个要素,B1 到 B4 是公共视频监控制的四个法律约束要素,目标是实现公共视频监控法律规制的结构优化。不同于传统 AHP 方法依赖专家的主观判断,本研究根据比例原则中各个法律要素地位平等的法理假设,把所有要素权重的初始值设置为等值分布($W_{ahp}=0.25$),以此作为本研究的理论基准。

在此基础上,引入前期获得的中心度指标进行权重的实证修订。在修订过程当中,将中心度归一化得到的客观权重值($W_{_denatel}$)与初始权重值($W_{_ahp}$)进行融合,得到的结果作为一个最终的权重(W_{final})。其中 α 取 0.5,用来平衡初始判断与客观数据的影响。这种理论基准和数据实证相结合的权重修正方法,正是 工程决策思维对传统法学分析的具体优化。

4.3.2. 最终权重结果

按照公式(1)对权重进行修正计算。

$$W_{final} = \alpha \times W_{ahp} + (1 - \alpha) \times W_{dematel}$$
 (1)

计算结果发现,四个要素在公共视频监控法律规制当中的重要性各有不同,具体表 4。

根据权重分析结果,公共安全视频监控法律规制中各要素的重要性呈现明显差异。利益均衡性(B4)的综合权重值为 0.280,位居首位。手段必要性(B2)的综合权重值为 0.264,目的正当性(B1)和程序合规性(B3)的综合权重值分别为 0.224 和 0.233。这个顺序表明司法实践中利益平衡和手段合理性更受重视。在因果网络中发挥基础性驱动作用的程序合规性(B3),在整体权重分配中却处于最后一位。

Table 4. Legal elements weight analysis results 表 4. 法律要素权重分析结果

要素	AHP 初始权重	DEMATEL 权重	综合权重	排序
B1	0.25	0.198	0.224	3
B2	0.25	0.278	0.264	2
В3	0.25	0.215	0.233	4
B4	0.25	0.309	0.280	1

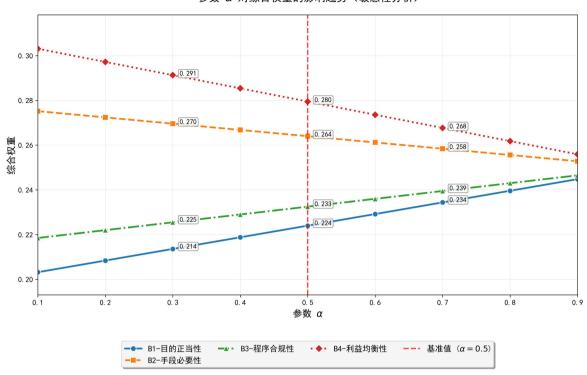
这种权重排序与因果驱动作用的错位,反映出当前司法实践中"重实体、轻程序"的结构性倾向, 也为后继通过工程决策方法优化司法裁判提供了明确的改进方向。

4.4. 模型稳健性检验

为了检验影响矩阵映射规则变化对分析结果的稳健性,本研究引入了系统的稳健性检验。整个检验 通过调整不同的映射规则,来观察系统稳健性的变化。

本研究采用了三种不同的映射规则:第一个是原始规则($0.75\rightarrow 4$, $0.5\rightarrow 3$, $0.25\rightarrow 2$),第二个是温和规则($0.75\rightarrow 3$, $0.5\rightarrow 2$, $0.25\rightarrow 1$),第三个是激进规则($0.75\rightarrow 5$, $0.5\rightarrow 3$, $0.25\rightarrow 1$)。通过对三种规则的实验分析,发现结果存在高度一致性(如表 5)。利益均衡性(B4)始终是核心的结果要素,它的中心度在三种映射情况下均保持最高。目的正当性(B1)和程序合规性(B3)的原因度总是正值,表示它们作为原因要素的驱动作用。手段必要性(B2)表示为稳定的结果要素。

此次发现的结果非常清晰地表明,尽管我们在量化过程中对影响强度设定了不同的赋值标准,但通过工程决策方法所揭示的法律要素间内在因果结构是稳定且可靠的。四要素在网络结构中的相对位置和因果属性没有发生本质的变化。这证实了本研究构建的复杂网络结构具有客观性和稳健性。从工程决策方法优化的角度来讲,稳健性检验结果进一步增强了将此模型应用于司法裁判实践的可信度。


Table 5. Robustness test results 表 5. 稳健性检验结果

映射规则	核心要素	原因要素	结果要素	B1 中心度
原始规则	B4	B1, B3	B2, B4	23.33
温和规则	B4	B1, B3	B2, B4	22.15
激进规则	B4	B1, B3	B2, B4	24.28

4.5. 参数敏感性分析

为了进一步验证混合模型的权重计算对参数 α 选择的稳定性,本研究进行了系统敏感性的测试分析。测试中把参数 α 从 0.1 到 0.9 进行变动,步长为 0.1。整个波动区间覆盖了从 α =0.1 (主要依赖 DEMATEL 客观权重)到 α =0.9 (主要依赖 AHP 基准权重)的主要范围。结果显示,各法律要素的权重排序依然保持完全一致:利益均衡性(B4) > 手段必要性(B2) > 目的正当性(B1) > 程序合规性(B3)。

实验结果表明,随着 α 值的增大(从 0.1 到 0.9),AHP 主观权重的相对影响不断增强,但 DEMATEL 客观权重的相对影响不断减弱。B4 的权重从 0.303 下降至 0.256,B2 的权重从 0.275 下降至 0.253,B1 和 B3 的权重稍微有所上升。如图 3 所示,从图 3 的影响趋势中可以清晰看到这种权重值的波动并没有改变各要素的重要性排序。

参数 α 对综合权重的影响趋势(敏感性分析)

Figure 3. Influence trend of parameter α on comprehensive weights **图 3.** 参数 α 对综合权重的影响趋势

这种对参数变化的不敏感性,进一步证实本次构建的混合模型的可靠性。这意味着在不同的主客观权重偏好下,此模型对法律要素重要性的基本判断保持一致,这为工程决策方法优化司法裁判提供了可靠的技术基础。

5. 结果讨论与政策分析

5.1. 理论发现与交叉方法的价值

本研究通过计算法学这一交叉学科范式,揭示了公共安全视频监控法律适用条件系统的内部运行机制。通过研究发现,比例原则在公共安全视频监控规制这一领域,表现为复杂的网络结构特征。这一发现打破了传统法学理论将比例原则视为线性结构的局限,为深入理解在数字环境下对比例原则的运作机制提供了剖析,充分展示了工程系统思维在解析法律原则时的优势。

值得注意的是,本研究通过工程决策的方法验证了程序正义理论。在这个揭示的复杂网络结构中,程序合规性(B3)虽然在实际案件中问题比例仅为5.56%,但其原因度值为2.6574,表示它是基础性驱动要素。这一结果展示了程序要素通过传导,直接或间接地影响其它要素,进而影响案件的最终走向。这个发现给程序公正对实体结果有基础性作用的理论提供了实证性证据,展示了程序合规在具体的司法实践中的"争议少但影响大"的特殊地位。

本研究同时对比例原则理论提供了重要的补充性认知。与传统认知不同,以往将目的正当性、手段必要性、利益均衡性等认为是线性结构,但本研究的结果发现这些要素之间形成了复杂的网络结构,凸显了程序合规性在比例原则理论中的驱动作用。这种动态交互关系为丰富数字时代对比例原则的适用范围的扩充提供了新思路。

最后,研究结果还发现了理论与实践之间的失衡关系。程序合规性(B3)在因果网络中起着重要的基础性驱动作用,但其在权重分配中却得分较低,综合权重值为 0.233。这种系统性的"重实体、轻程序"倾向,反映了在具体的司法实践中对程序合规性的重视不够,只有通过本次工程建模与量化分析才得以清晰呈现,充分展示了交叉研究方法对拓展传统法学认知边界的重要价值。

5.2. 基于模型发现的政策启示

根据本次对公共安全视频监控法律适用条件的实证研究,本研究提出以下政策建议。

在立法层面:首先要明确程序合规性的基础性地位,把程序合规设定为公共视频监控实施的强制性前置条件,在《公共安全视频图像信息系统管理条例》中予以明确规定,这对模型揭示的"重实体、轻程序"的结构性失衡起到根本性的纠正;其次,针对手段必要性(B2)问题比例较高,应制定必要性审查指南,确定"最小侵害"的技术标准。为后期的执法提供规范的引导,避免因为标准模糊导致裁量权失衡;最后,需要建立动态的权重机制,根据不同的公共场所对各个监控的要素进行动态调整,从而使得公共视频监控的法律规制落实到每个场景当中。

在司法的具体实践层面:首先,利益均衡性(B4)在模型中具有最高综合权重(0.280),因此需引入成本收益分析等量化工具,进行安全收益与隐私成本之间的平衡。其次,应加强对程序合规性(B3)的审查力度。虽然它的综合权重较低,但它是原因度最高的驱动要素,必须在审理初期就要进行严格审查,因此避免出现程序因被忽视而后期产生判断偏差的问题;最后,手段必要性(B2)是重要的传导性要素,在审理过程中应具体审查是否遵循了最小侵害原则。这种差异性的审理策略,可以提高审判效率,形成更均衡的审判结果。

在执法监督层面:建议构建公共安全视频监控的全程监督机制,对于项目立项、审批、建设、运营 全过程都要实施严格的程序合规性检查。从事前、事中、事后三个阶段,标准化执法流程和明确权责划 分,提高执法规范性和政策透明度,对公共安全与个人隐私保护寻求更好的均衡点。

这些建议将工程分析所揭示的系统规律转化为可操作的制度设计,从而实现由"数据分析"到"科学治理"的跨越。

6. 研究结论与交叉范式展望

本研究以"工程决策方法如何优化司法裁判"为核心问题,以 396 份公共安全视频监控判决书为例,通过引入 DEMATEL 与 AHP 混合模型,对公共安全视频监控法律适用条件进行了系统分析。实证研究结果表明,法律适用条件表现为一个复杂的、动态的、多向影响的网络系统,这不仅仅是对比例原则理论的拓展,更为重要是实践了法学研究方法从"思辨推演"向"数据实证"的变迁。在这个系统中,利益均衡性(B4)是影响公共安全视频监控法律规制的核心结果要素。手段必要性(B2)是重要的传导要素。程序合规性(B3)和目的正当性(B1)是起基础性驱动作用的原因要素。通过工程决策方法所得出的要素关系图谱,为理解司法裁判的内在逻辑提供了新的研究视角。

本研究的理论贡献重点是方法论的示范,整体展示了工程决策方法如何通过"因果识别-权重测度"的技术路径,为司法领域的复杂问题提供具有可操作性的解决方案。通过稳健性检验和参数敏感性分析,证实了本次研究结论的可靠性[10]。

本研究的完成,标志着工程决策方法与司法裁判领域的交叉融合迈出了实质性的一步。展望未来,在研究方法上,可以引入更加复杂的自然语言处理(NLP)模型和知识图谱等人工智能技术,实现对法律文本要素的自动化识别与提取,进一步提高识别的准确性。在数据维度上,进一步扩大收集数据的范围,将更多的公共安全视频监控场景(如交通枢纽、商业街区、住宅小区)纳入分析范围[11]。在研究范畴方面,

这种"因果识别-权重测度"分析框架,可拓展应用于知识产权审判、金融司法监管、环境保护司法等 更多法律领域。

尤为重要的是,这种交叉研究范式有望推动法学研究方法的系统性革新。通过将工程学科的系统思维、建模方法与法学的规范分析、价值权衡相融合,我们能够构建起连接法学理论与司法实践的数字桥梁,为复杂法律问题提供从理论与实践均可执行的稳定方案。当工程决策方法被引入到司法裁判领域,我们必将推动司法裁判迈向更加规范化、智能化的崭新发展阶段,为司法实践的优化提供新的方法论支持。

基金项目

本项目受上海市哲学社会科学规划课题(项目编号: 2021BFX005)资助; 2025 年华东政法大学校级重点课程《信息博弈论(实践实训)》资助; 2025 年华东政法大学校级紧缺急需课程《法律算法与建模技术》资助。

参考文献

- [1] 陈君武, 刘达洲. 公共安全视频监控存在的问题及其对策研究[J]. 湖北警官学院学报, 2016, 29(2): 61-65.
- [2] Brayne, S. (2020) Predict and Surveil: Data, Discretion, and the Future of Policing. Oxford University Press. https://doi.org/10.1093/oso/9780190684099.001.0001
- [3] 童彬. 公共视频监控图像信息利用与保护的基本法律问题与立法规制[J]. 重庆邮电大学学报: 社会科学版, 2018, 30(5): 55-63.
- [4] 欧元军. 公共安全视频监控立法问题研究[J]. 科技与法律, 2018(2): 44-49.
- [5] 李延舜. 公共视频监控中的公民隐私权保护研究[J]. 法律科学: 西北政法大学学报, 2019, 37(3): 54-63.
- [6] 王秀哲. 公共安全视频监控地方立法中的个人信息保护研究[J]. 东北师大学报: 哲学社会科学版, 2019(5): 57-68.
- [7] 朱陶, 洪卫军. 应用 AHP 法和 MATLAB 视频监控效能评估[J]. 中国人民公安大学学报: 自然科学版, 2015, 21(1): 61-64.
- [8] 沈超. 论高度盖然性的证明标准——从比较研究角度审视[J]. 法制博览, 2017(18): 274.
- [9] Tzeng, G., Chiang, C. and Li, C. (2007) Evaluating Intertwined Effects in E-Learning Programs: A Novel Hybrid MCDM Model Based on Factor Analysis and Dematel. Expert Systems with Applications, 32, 1028-1044. https://doi.org/10.1016/j.eswa.2006.02.004
- [10] 陶帅. 智慧城市信息安全风险管控系统韧性及提升路径研究[D]: [博士学位论文]. 北京: 中国矿业大学(北京), 2023.
- [11] 吴晓,马俊威. 面向城市公共安全的视频监控实效评估与改进策略——基于南京市公共空间的实证分析[J]. 湖北警官学院学报,2020,33(3):114-126.