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摘  要 

洛必达法则是高等数学中的重点和难点，因其在极限计算过程中的简便而被学生们普遍使用，但是很多

学生会因为理解不到位而出现错用和滥用的情况。本文将通过梳理学生在使用洛必达法则过程中出现的

常见误区，深入分析误区产生的根源，提出“前提检验、结果判断、未定式辨析、多种方法优化计算”

的教学对策，并对此教学对策的教学结果进行了检验。 
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Abstract 
L’Hôpital’s Rule is a key and challenging topic in advanced mathematics. Its simplicity in calculating 
limits makes it popular among students, yet many misuse or overuse it due to insufficient under-
standing. This paper systematically examines common misconception students make when applying 
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L’Hôpital’s Rule, delves into the root causes of these misconceptions, and proposes teaching strate-
gies such as “precondition verification, result judgment, identification of indeterminate forms, and 
optimization of calculations using multiple methods”. The effectiveness of these teaching strategies 
has also been tested. 
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1. 引言 

在《高等数学(上册)》学习过程中，极限计算一直贯穿于微积分整个教学过程。对于极限思想的理解

深度会影响着后面导数的计算、微分的微元思想和积分的先微后积的理论学习。在对函数极限的计算上，

洛必达法则是计算极限的重要方法之一。表面上看，它是求解未定式函数极限的重要工具，实际上它在

微积分教学体系中起到了连接微分学与极限理论的重要作用。 
在无穷小量学习内容中，介绍无穷小量阶的比较时，我们知道因为两个无穷小量趋近于 0 的速度不

同，所以它们的比的极限可能为 0，可能为非零常数 C，也可能为∞。对于两个无穷小量比的极限的算法， 

即
( )
( )

f x
g x

的极限为“
0
0
”型的极限问题，洛必达法则用导数的理论给出了一种计算方法。由于一个非零函

数 ( )f x 在 0x x→ 时，若为无穷小量，则其倒数
( )
1

f x
为 0x x→ 时的无穷大量，所以洛必达法则还可以进

一步延伸到求“
∞
∞

”型的极限问题中，它极大地简化了导数计算问题，提升了计算效率。同时，它是从 

“用导数(微分)近似局部线性”走向“用多项式高阶逼近(泰勒公式)”的中间环节。所以熟练掌握洛必达

法则才能为后续内容的学习奠定必要的计算基础。 
孙老师在[1]中和李老师在[2]中都探讨了洛必达法则的应用，并指出了几个应用过程中常出现问题。

王老师在[3]中和卢老师在[4]中都是总结了常见的洛必达法则的使用情况和注意事项。但是以往的研究都

没有指出学生出现这些问题的根本原因和教师的应对策略。本文将通过梳理日常教学中学生在学习和使

用洛必达法则过程中出现的误区，深入分析各种问题出现的根源，并提出有效的教学策略意见。 

2. 洛必达法则常见的误区类型、成因分析以及相应的教学策略 
首先，回忆定理(洛必达法则) [5]：若函数 ( )f x 和 ( )g x 满足： 

① ( )
0

lim 0
x x

f x
→

= ， ( )
0

lim 0
x x

g x
→

=  (或者 ( )
0

lim
x x

f x
→

= ∞， ( )
0

lim
x x

g x
→

= ∞ )； 

② 在点 0x 的某空心邻域 ( )0xU  内 ( )f x 和 ( )g x 都可导，且 ( ) 0g x′ ≠ ； 

③ ( )
( )0

lim
x x

f x
A

g x→

′
=

′
 (A 可为实数，也可为 ±∞或∞。)； 

则
( )
( )

( )
( )0 0

lim lim
x x x x

f x f x
A

g x g x→ →

′
= =

′
。 
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以上定理也适用于 0 0, , , ,x x x− +→ −∞ +∞ ∞等情况。 

下面对比各类常见的应用问题和相应的正确做法，并分析出错的原因。 

2.1. 忽略条件②“ ( )f x 和 ( )g x 在点 x0 的某空心邻域 ( )xU
0

 内都可导” 

学生在高中阶段学过洛必达法则，但学习深度不够、理解不清，只记得
( )
( )

f x
g x

的极限为“
0
0
”型或“

∞
∞

”

型时可以用洛必达法则，所以在使用时就会出现乱用的情况。 

错题举例：
2

2

3 6lim lim 3
24n n

n n
nn→∞ →∞

= =
−

 

正确做法：

2

2 2

2 2

22

3
3 3lim lim lim 3

44 4 1
n n n

n
n n

n n
nn

→∞ →∞ →∞
= = =

− − −
 

成因分析：通过观察可以发现，学生对数列极限使用了洛必达法则，但是数列中 n 取的都是正整数，

数列不是连续的，那更不会可导，所以此处明显违反了洛必达法则的第②条件。所以主要问题在于学生

对数列的认识不清，以及对导数可导条件的忽略。 
教学策略：针对此问题，在教学时，对于每道题教师要不断强调 ( )f x 和 ( )g x 是连续且可导的，“可

导的前提条件是连续”，通过反复练习，使学生对函数可导的条件以及洛必达法则的适用条件内化为

程序性知识。这样不仅可以降低学生出错的频率，还进一步巩固了学生对可导和连续之间的关系的理

解。 

2.2. 对洛必达法则的分子、分母分别求导和函数比的求导法则分辨不清 

错题举例：
( )

20 0

sin 1 cos1 coslim lim
x x

x x xx
x x→ →

− −−
= =  

正确做法：
0 0

1 cos sinlim lim 0
1x x

x x
x→ →

−
= =   

成因分析：学生在错误应用洛必达法则后，使得极限问题越变越复杂，主要是因为学生没有完全理

解洛必达法则的来历和两函数比的求导过程中的区别。 
教学策略：教师在教学过程中要进行对比式教学。详细对比分析两函数比的求导法则和洛必达法则

的由来，使学生清楚二者的区别。 

在洛必达法则中，是对
( )
( )

f x
g x

求极限。设函数 ( )f x 和 ( )g x 在点 0x 连续，由 ( )
0

lim 0
x x

f x
→

= ， ( )
0

lim 0
x x

g x
→

=

可知 ( ) ( )0 0 0f x g x= = 。根据柯西中值定理， ( ) ( )0 0, ,x x x xξ ξ ∃ ∈ ∈ 或 使得 

( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( )

0

0

0
0

f x f xf f x f x
g g x g x g x g x

ξ
ξ

′ − −
= = =

′ − −
，从而有

( )
( )

( )
( )

( ) ( )
( )
( )

0 0

0 0

0 0 0

, ,
,

lim lim lim

x x x x
x x x

x x x x x x

f x f f x
A

g x g g x

ξ ξ
ξξ

ξ

 ∈ ∈ 
→ →

→ → →

′ ′
= = =

′ ′

或

当 时
。 

在两函数比的求导法则中，是对
( )
( )

f x
g x

求导。根据导数定义，如果 ( )f x 在区间 I 上可导，那么 

( ) ( ) ( )
0

lim
x

f x x f x
f x

x∆ →

+ ∆ −
′ =

∆
，可以推出 
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( )
( )

( )
( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( )

0 0

0

0

2

lim lim

lim

1lim

x x

x

x

f x x f x
f x g x x g x f x x g x f x g x x
g x x g x x g x x

f x x g x f x g x f x g x x f x g x
g x x g x x

f x x f x g x g x x g x f x
x x g x x g x

f x g x g x f x

g x

∆ → ∆ →

∆ →

∆ →

+ ∆
−′  + ∆ + ∆ − + ∆

= = 
∆ + ∆ ∆  

+ ∆ − − + ∆ +
=

+ ∆ ∆

 + ∆ − + ∆ −       = − ⋅ 
∆ ∆ + ∆  

′ ′−
=

  

 

通过对比二者计算过程，可以清楚看出，一个是对
( )
( )

f x
g x

求极限，有
( )
( )

( )
( )

f x f x
g x g x

′
=

′
 ( ( )f x 和 ( )g x 为

无穷小量的情况下)，一个是对
( )
( )

f x
g x

求导。在求极限的过程中，如果对
( )
( )

f x
g x

求导，显然一般情况下

( )
( )

( )
( )

f x f x
g x g x

′ 
≠  
  

，所以在使用洛必达法则的过程中一定不能对
( )
( )

f x
g x

求导。 

2.3. 忽略对
( )
( )
′
′x x

f x
g x0

lim
→

的极限的验证 

错题举例：
cos 1 sinlim lim

1x x

x x x
x→∞ →∞

+ +
=  (极限不存在) 

正确做法：
cos coslim lim1 1 0 1

x x

x x x
x x→∞ →∞

+
= + = + =   

成因分析：通过例子可以看出，有些学生在计算时只考虑了洛必达法则的第① ②条，缺少对第③条

的判断，导致错误计算函数极限。出现此类问题主要在于学生对洛必达法则的记忆不完全。 

教学策略：对此类问题，在教学过程中需要教师不断强调
( )
( )0

lim
x x

f x
g x→

′
′

的极限存在或为∞的必要性。在

运用洛必达法则计算极限时，先判断函数是否满足条件① ②，如果满足，可试用洛必达法则。经计算之

后，如果
( )
( )0

lim
x x

f x
g x→

′
′

的极限不存在，说明该题不可使用洛必达法则，需要换方法重新进行计算。 

2.4. 计算过程出现循环形式，无法计算出极限 

错题举例：
2 2

2

2

1 1 1lim lim lim lim
1 1

1

x x x x

x x x
xx xx

x

→+∞ →+∞ →+∞ →+∞

+ +
= = = =

− +
+


一直循环，无法计算出极限 

正确做法：
2 2

22

2

1 1lim lim lim lim 1
11 11 1

x x x x

x x x
x xx

x
→+∞ →+∞ →+∞ →+∞

+
= = = =

− ++ +
 

成因分析：学生在计算过程中一味地使用洛必达法则，没有认真观察题目其它特点，没有合理利用

函数本身的性质。 
教学策略：在做题过程中有时会出现循环形式，但做题也是探索知识运用的一个过程。只要做题过
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程逻辑上没有问题，教师要允许学生试错。有时在计算过程中出现循环情况后，学生会发现此问题，这

时教师再引导学生对计算进行修正，可以起到良好的教学效果。 

2.5. 对极限的特殊类型，如“∞ − ∞”型、“1∞
”型、“ 0 ⋅ ∞”型、“

00 ”型、“
0∞ ”型等

极限的变化掌握不到位 

2.5.1. “∞ −∞ ”型 

错题举例：
0

1 1lim 0
sinx x x→

− = ∞ −∞ =  

正确做法： 20 0 0 0 0

1 1 sin sin 1 cos sinlim lim lim lim lim 0
sin sin 2 2x x x x x

x x x x x x
x x x x xx→ → → → →

− − −
− = = = = =

等价替换

 

成因分析：学生将“∞−∞”看作“C C− ”，导致计算错误。 

2.5.2. “ ∞1 ”型 

错题举例： ( )1lim 1 1 0 1
x

x x
∞

→∞

 + = + = 
 

 

正确做法：

2

2

1 1
11 1ln 1

11 1 1ln 1 ln 1
111lim 1 lim e lim e lim e lim e lim e e e

x

x
xx

x xx
x x x x x

x x x x x xx

 
⋅ −    ++ 

 
    −+ +   
    +

→∞ →∞ →∞ →∞ →∞ →∞

 + = = = = = = = 
 

  

成因分析：学生认为“1∞ ”就是无穷个 1 相乘，而 1 的任何次方幂都等于 1，所以1 1∞ = 。 

2.5.3. “ ⋅ ∞0 ”型 
错题举例：

0
lim sin ln 0 0
x

x x
+→

= ⋅∞ =  

正确做法：
2 2

0 0 0 0 0 0
2

1
ln sinlim sin ln lim lim lim lim lim 01 cos cos cos cos
sin sin

x x x x x x

x x x xxx x x x x x x x
x x

+ + + + + +→ → → → → →
= = = − = − = − =

−

等价替换

 

成因分析：学生认为 0 乘以任何数字都等于 0，所以 0 0⋅∞ = 。 

2.5.4. “ 00 ”型 
错题举例： 0

0
lim 0 1x

x
x

→
= = 或者 0

0
lim 0 0x

x
x

→
= =  

正确做法：
2

1
ln

11
ln ln 0

0 0 0 0 0 0
lim lim e lim e lim e lim e lim e e 1

x

x x

x x x x xx x
x x x x x x

x
−

−

→ → → → → →
= = = = = = =  

成因分析：有些学生认为任何数字的 0 次方都等于 1，所以就有 00 1= ，忘了“非零”这个条件。还

有些同学认为 0 的任何次方都是 0，所以 00 0= 。 

2.5.5. “∞0 ”型 

错题举例：
1

0lnlim 1x
x

x
→+∞

= ∞ =  

正确做法：

1
ln

1 1 lnlnln 1ln ln lnlim lim e lim e lim e e ex
xxxx x x

x x x x
x

⋅

→+∞ →+∞ →+∞ →+∞
= = = = =   

成因分析：仍然是部分学生认为任何数字的 0 次方都是 1，所以 0 1∞ = 。 
教学策略：对于以上问题，在教学过程中，教师需要不断强调∞和 0 的特殊性，对于非零常数 C 成

立的结论，在∞和 0 的情况下一般不成立，所以碰到∞和 0，需要特殊对待。 
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3. 对极限计算的方法运用不灵活 

复杂做法举例 

( )

( ) ( )

( ) ( ) ( )

2 3

3 20 0 02
2 3

2 3 3 3 2

0

2 3 3 3 2 3 2 3 2 2

0

1 cos cossin 1 coslim lim lim
1tan 33

cos
sin cos 1 cos 2cos sin 3

lim
6

cos cos sin 2cos sin 3 sin sin 2 3 1 cos cos 2 6 3 1 cos sin 2
lim

x x x

x

x

x xx x x
x xx

x
x x x x x x

x
x x x x x x x x x x x x x x x

→ → →

→

→

−− −
= =

⋅

⋅ + − ⋅ ⋅ − ⋅
=

⋅ + ⋅ ⋅ − ⋅ − ⋅ ⋅ − − ⋅ ⋅ ⋅ − − ⋅
=

3 6

6
1
6

x⋅

=

 

正确做法：

2

3 3 2 20 0 0 0

1
sin sin 1 cos 12lim lim lim lim

6tan 3 3x x x x

xx x x x x
x x x x→ → → →

− − −
= = = =

等价替换 等价替换

 

成因分析：学生对于知识都是初学，对各种计算方法掌握还不到位，还没达到随即应用的地步。洛

必达法则，部分同学高中有接触过，但是等价无穷小的替换学生还处于初识的状态，还没有完全领略到

等价无穷小替换的便利之处，还有一部分同学是还没搞懂等价无穷小替换要如何使用。 
教学策略：对于极限计算方法的灵活使用，仍需要学生多练习。需要教师有针对性地设计相关的题

目供学生进行训练。并在习题讲解过程中，不断分析等价无穷下替换的优势、函数化简地重要性，这些

都能够将函数变简单，方便后面的计算，极大地减少计算量，降低错误率。 

4. 教学策略总结 

在
( )
( )0

lim
x x

f x
g x→

型的极限计算过程中，教师需要教会学生进行条件的判断，而且还要不断带领学生掌握

3 个条件的判断方式。题目是否能用洛必达法则，首先检验条件①， ( )f x 和 ( )g x 在点 0x 处极限是否同

时趋近于 0，或者同时趋近于∞。再检验条件②， ( )f x 和 ( )g x 在点 0x 的某空心邻域 ( )0xU  内是否都可导。

如果两条都满足，可以试用洛必达法则，对分子、分母分别求导，然后求极限。如果
( )
( )0

lim
x x

f x
g x→

′
′

的极限存

在或为∞，那就说明它满足洛必达法则的条件③，此题计算结束；如果
( )
( )0

lim
x x

f x
g x→

′
′

的极限不存在，也不是

∞，那就说明它不满足洛必达法则的条件③，此题需重新换方法进行计算。 
另外，在计算过程中，要结合已学的各类函数极限计算方法，如分式化简、等价无穷小替换、取对

数求极限、变换函数形式等方法，灵活进行极限计算。对此，我们可以做出如下总结“变量趋于 0，考虑 

等价替换；底数指数都变化，考虑取对数； 0 ⋅∞可变
0
0
或者

∞
∞

；对于“∞−∞”，考虑通分变形。” 

5. 教学反馈 

近几年，因为每一级学生在高中阶段了解过洛必达法则，所以在大学阶段学习数列极限时就用洛必

达法则求解，导致求解结果出问题。这一现象提醒了教师在后续洛必达法则的教学过程中需要对三个条

件进行详细地分析。在近些年的预科的洛必达法则的教学中，作者增加了以上的教学总结。由于预科数

学课程课时量比较充足，所以在各部分内容讲解完之后，有多余的时间进行习题的详细讲解，教师对洛
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必达法则内容的不断重复，加深了学生对它的理解，也提升了做题的正确率。在本科教学中，由于课时

量较少，对以上教学总结提及相对较少。经过 5 年对本科和预科学生进行有关洛必达法则内容的相同的

小节测验，发现本科生测试平均成绩整体较预科生平均成绩要低。但是随着对本科教学节奏的调整，两

个专业的学生的平均成绩差距也越来越小，见表 1。 
 
Table 1. Comparison of examination scores for students in two majors  
表 1. 两个专业学生测验成绩对照表 

近 5 年《函数极限的计算》测试成绩对比表(满分 100 分) 

 预科生平均成绩 本科生平均成绩 

2025 年 87.3 分 86.8 分 

2024 年 87.5 分 86 分 

2023 年 90 分 87.4 分 

2022 年 86.5 分 81.7 分 

2021 年 85.7 分 83.1 分 

6. 总结 

高等数学作为理工科专业的基础课，对其内容的理解的深度，直接影响着学生在各专业的发展。而

极限作为高等数学内容的基础，又影响着高等数学的学习，所以对极限思想的理解和极限的运算能力是

重中之重。洛必达法则是用导数反作用极限，不仅要求学生对极限思想有深入的了解，还需要学生对导

数很熟练，它综合了初数、极限和导数的各类运算，所以引导学生灵活运用各类知识，巧用洛必达法则

进行极限计算，可以为高等数学后面内容的学习打好坚实基础。在本科教学中，教师可以灵活调整课程

节奏，对关键知识点多讲解，让学生多练习，增强学生对知识的运用能力，也进一步提升学生学习高等

数学的自信心。 
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