Journal of Advances in Physical Chemistry 73 {k 23 %, 2026, 15(1), 39-50 Hans X
Published Online February 2026 in Hans. https://www.hanspub.org/journal/japc
https://doi.org/10.12677/japc.2026.151005

BT 1L =tk E A fSpectraNetBk & HY
XRFTEE S B ZniBER S5 EHR

THA, & ¥, R B
KEHTRAYHZRE, S KE

Weks . 20264F1H 120 FHER: 20264F2H6H; &AM HM: 20264F2H14H

R

AL SANHRNIEE, FEMAKESMET HRNESRER. SR PNESRTRSER
HRKHEE e aMERANE, SENESR AR ANEERERRE. Hik, RIEHFES
RIFZ R ) HREEA, RIT RS HeBiih TAERIRB P TR BT AR XS (XRF) S X IRE T 22
B B KA AE AR B ORI HE,  H4E SrairPLS SRR AR U AT A RN R E T B R &
J&» FIFAH TR KR E % IR SpectraNetX T3 AR B HAEEE RIS R NKETIN . LIRS
RER, BHREES N HRTRAESE LRIV BIFHRAIEREAARE P, ART AT BT S
TIEE D ITES PRIV T AT KA HRRE, 7ERIRZIRAE LT efs KO PuR R

X 5in
XFERTOINHE, BERMER, BESEREMET &/ —5ik(airPLS), $7T&K, SpectraNet

Research on the Analysis Method of
Excessive Zn in Soil Based on Soil
Background Estimation Algorithm and
SpectraNet Combined with XRF

Tengyue Yu’, Ye Li, Peng Zhao

School of Physics, Changchun University of Science and Technology, Changchun Jilin

Received: January 12, 2026; accepted: February 6, 2026; published: February 14, 2026

IR

XEBIH: TR, Z5EF, B, T IR R AN SpectraNet BES I XRF HIRE 48 zn HAR T TR TN
YRRAk 2233 R, 2026, 15(1): 39-50. DOI: 10.12677/japc.2026.151005


https://www.hanspub.org/journal/japc
https://doi.org/10.12677/japc.2026.151005
https://doi.org/10.12677/japc.2026.151005
https://www.hanspub.org/

ThEk 2%

Abstract

With the advancement of social modernization, frequent human activities have intensified the heavy
metal pollution of soil. When the content of heavy metal elements in the soil exceeds the risk screen-
ing value, they will be ingested into the human body through the food chain, and excessive accumu-
lation of heavy metals can cause damage to human health. Screening out the soil with heavy metal
pollution is an important step in soil pollution control. The spectral data of 22 national standard soil
samples were obtained by using X-ray fluorescence (XRF) spectrometer, and then the background
subtraction was carried out by combining airPLS and Gaussian convolution for pretreatment. Finally,
the SpectraNet algorithm was used to predict whether the soil samples had the risk of heavy metal
pollution. The experimental results show that the model has good recognition performance and sta-
bility on multiple soil element datasets. The network proposed in this study has shown more com-
prehensive discrimination performance in the qualitative analysis tasks of various soils and can
achieve rapid inference under resource-limited conditions.
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1. 518

TR E SRR MR ERBIRE S 8 — . A ST POE R, BRI
W= IR RS NGB [1] [21nEIE LI B4R 15 e re g . 48 M. . Y. B ESJRE
A3 A TS b s KAt B R E B 5 e N 48, I ELAK T [R] i B A DA . a2k SRR
T b Y H G R AR A IR R AR, R o6 AR R A B T TR B . B REIL R E TR
Z—. HZHO5RMAW, REKZEMMCBIFNET, SESRESEEMEKRSE TR, R
RN AR AT RIRMEE RV 2 0T, @ A BRI ARz s,
HUCE B T A e FIREHE T B bt e R E &, OB S S 2RI L3R [3]. BE1E
TR EE, LAASEIEMMAAN N EE, X E SO, i EX X R NS
fa . FEEG KRR H 2 IE RN AT, rBED, RMIE/N, W RAZEE. dENEESE
IR R EIETE, AN ECH >, IR R R RS [4]. S E R NI R A . R
il R W A PR PR T RO R TR 0, T FRAR AR 1 S s ThRe, AEHURRE 1085, TT6 B 5 il P as . &
MEERE AN IR R, AN S M BRI S R, 5 SO R A ] M gk e 3T 1, 5 HLAE AR Y et
BUF, BRI ERHIR, AR ST A & . NMAN S AR c RN G hURIIRE, Hl TES5mA
P, BT SRR IS AR EAE T, RN SRR R, B SRR EPURRE PR, E R
HK[5]. BT RETF HAE., WIESZRIUCNRYE, pH H1E 5.0~6.5[6][7], T EERIITEEIE:
PEFE A % . HidHE GB15618-2018 (A4 N [RH: A ] [ S A vh: - 338 PR 55 o = Ak P Hb - 13835 e XU A 42 b v
(7)), b E SR o R S AR TR I E I, R RE et AR RIS BB, ROZIT RedE—P
(VRN A 2 DAVl 122 X3 H 35 Yo G FE R . AR, IR SRS Y A BR8], AARAE LA
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R LI R G AAEESE LSRRG, T BRI MBAR 138 1o & & E AT
E SR . BEE U X BHR DO IE(ED-XRF) T /& —Fh i I IR POEAG I T R 7
%, ISR . SR, TR &0, A BRI AT 2 A T L. A8SMESEAR[9] [10].
fE1-4 EDXRF YT, B SAbiHE S R 2 (LI R DLm ol = AR R AR E S bRkt
d, BSDREEREIE R HUSEIE AR B L. 27 R ERIREN 5, (S Shr LR B,
DA I % 2H 5y BEARIRSORN 22 T 3R RFAE UG B NS5 RN, DR b1 280 f) 6 48 5 S B T 3 e i v (1) A IR 2R A7 AT
RGVEmMZ, JCHAETCR & B B RO H B 22 2 W] R A il B SO R Y . | Tl 7 A 0 B 4
J& S EARMK, JTRRHEE 2 ML HOO BN T T R R AR IR, T ST Al 2 b 45
RZEWAEWIN[11], FULERA ED-XRF Z0Hrhf, %G SR T dem rb e BB, RS
[12]45 FH G v H BURR PRk AR B (SNIPY KTy RETE G751 B 2R HEAT A KN BR, Tan 25 A [13]REAR /N
L (WT) R H T 2 A8 86k B (R 26 R 0E, A 0ERR THREE . B 53t Zhang S5[14]i8
T 3 R A AR T d5 /N ik (airPLS) N B R 8 61 b AT 8 SR el b, (B BIRTTVEAE
H B IR S S — @ FIRCR, (B AS RS 3 2 R0 E &8 1 XRF e, @ A
BAE . [FITBEE N LR R RN A o BT, i v 458 R 4 J Vg G XU s H B TR SR . AT
—[15]SE B T BT R AL L R E A Jm VT YR Y, Hu [16]55 R BEALAR AR Sk N - 3 5
SlEEE. RTEUTSEPESE Zn us AN R, REE SR ME 500 5 10 XRF i, did
AN BIE M. airPLS 454 MG B R 3 T WAL EE, SRJ5FIFH SpectraNet #5278, K&k AR HNBR G
() — 4B AR VR VBB AN, S 33 ) B 4 B VS et AT IR T a2k

2. SLHERSy
2.1, #REH

SCIGRE AR 22 45 B K br vtk AR B, £ AU GSS-5. GSS17. GSS-20 Al GSS23 25 GSS -3k
I NTAREDD T, B E T M7 L3RRS o HTARHED T FD GSD K R YT 53 7 B b i 4 = A R 51
TR SIS T EDXRF JGIEAY, TAEHE Y 40 kV, TAEMRN 100 pA. ORI N Mo 2 X 4t
BHE, ST WORFFEREM G, 18T SDD BRI A2 SCRr 2 FE M UK J5 I RE S, ol SRR BEAT AT
T A R BE T o

2.2. RS HRF EFVEAIRAR

2.2.1. BENMEREMBUES &N _REEFE

3 S A EE I BUAE §1 B /s . 3fevZ: (adaptive iterative re-weighted penalized least squares, airPLS) % f T
— YL IR LR E[14]. BRI PR SR DI DU A, RSN T REAR T AL E )
B, (ETTHR P hRd i X I G0 T & R X o M P B e, RIS ZE U6 TR 52 2% (1 350 h th e 4 B o 35
ARIRAFIF M. Rkl g, FESRIERER SR TAE: T8 ek LSRR ZE) R ETE
HOE gk, TS H T — Al TR A7 TR T I R (R ZE) DR B BORAN R, nsmnt BE R ) N R 4R .
St v 4 SRR W T I T I FUSE Y S, ELEWER.

BBRIETE S x =[x, -, x| FIKEEA N, S ETRABINE ST, 2 BENEREE, A
B MoK BERBE x BA AR &S, @it FARRIRE T

Fed 42y @

(e g A LA M) P 22 2 4079 0 )17 A SRR AR FE R+
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R:i(zi ~7.,) (2.2)
i=2
IR ZE P 7 AN R R R AR, AT AR R
Q=F+1R (2.3)
XHEE) A NBESEORE, BORM A v DI RN R L, A SCBUING A AR 3R 2 S 9] 1
JFIRME S o i 1N FUEROE R E AL w, Hod OB E, Inkda & w AR E N 0, TERE—IKiE
R, FATH T EIATE S B/ R Q' .

Q' :Zwit|xi —zi‘|2+/12vvi‘|ztj —th|2 (2.4)
i-1 j=2
Xf T H i ROEAR E N R AR SA T AR T T AR IR 64, AT SR R I, BLa &
VBES AW/AS WA R
0, x >z
Wit = t(Xi*ZiH) (2.5)
e [ x <z

Horp, g d RS t SO RET, RIGE S x5 27 ZEZR/NT 0 B TR fE B, 3K
114 2NN S H A, SR IERIFIG(E S x KTRERNS%, MU REER—#50, ©HBUE
BN 0, FE T — UGB A 20 o S 2 WA S (2.5) R BEAUAE., AR AE e K AR Bl /2 T Xt
Ak

o] < &x[x] (2.6)

h, e NBIME R E, A% HE 0.001 [17].

2.2.2. BETYi# airPLS GABSHTERNLIRYE RMETHE X

NTRILEFANE IR, AW 7T St airPLS 45 & i G AR A0 L3 R Al T HRE,
ZITIFAEORE airPLS 7710 R P L 3 ik ity b, @ R 3 i o 1B i 5w IR T A AR P R S
WA, I RO R T AR R 0 2 DK T3 BhAh, R A G i e AR AT e e A AR
St il 2 2 1) H BT L TG R A SRR B A 1 PR .

(1) HNJEEE 5% XRF 6 x =[x, %]

(2) EILNRAR Y B UG S T R TR RS AT

(3) Kt KB E BRI m ANEERDEREE 1 X, JPONREANE R airPLS HA RSN
Hn .

(4) 73 WS REANGHE & AT airPLS FEZAl LI, A3 205 | B DRSS t UGB AU AT SR L B
W (2.6), & B 5 B ZIAIMIIRZE/NTBE BIE & WK B AL E H R R T 5IELR, 4k sk A
FYRE RS En , Fkfe ik JEp R R ) A RN
N B -B™

B!

(6) e, WL AT ERIEEC TSN E LT L, [ EREREL B . MR 5 M
BN BB L H ST AT, CUHERIER IR [18]. Ml &g AT

<p @7)
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G(-2) GO . 62 |_ps (28)

Y600 X600 X ,6(%
SR IITEBUR 925 Q APIARROY BT, 5 qr LB AR

Kernel =

BT (k)= 22 BY(z)*Kernel (k—2),k=1,2,--,N (2.9)

b, k3R XRE i @ IES. v 1P ES s RS T SRR, 258 g+ LXK SIS
BB IAT BT AL LN
B (k) =min{B° (k),B*" (k)| k =1,2,-+,N (2.10)

/ N: JRGH XRE i /

'

N AR 2

ST A
I, SRS Hn

[
]

At airPLSFEAS R X, & 1
1) J Y sk 2k By

IBENEA R Hn R
SLLR TR F B ?

JRHAJEDB; (4=1, 2, 3. .. w)
gt m B IEACF A 2
AJRE LB

S

Figure 1. Flowchart of the soil background estimation algorithm
based on airPLS and gaussian convolution
E 1. &£T airPLS A SHERNTIEE REITEERTEZR

2.2.3. &F SpectraNet B+ E & B T EBIFHI BIFFT

N7 RAIER M E SR TR BbR, AFFRHEH T SpectraNet BB, LEH A AT SR ANIBR AL HE
J& 3G B ) 2048 ANETETHEUE, BAM AR . BRI, REERSEIUZE, DL
JEFTL R, %W 4% [F I AT T AR AT TR R AT ) B B R SR B, RS AE T B B URAZ BRI RN
R EEE, H&SEmHERRE . ML 2 Bk,
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R TG airPLS 255 i TG AR 3 AL T 5545 21 JRUA O Bl 10 SRR, JRUIRDL
WU 5 T SR LA RO SRR RO, IR AR M AR RN . el i B B )
R AU AFAL AR — S AR A O L SR B, SR T I SRR EPE T . 35 kil 5%
ZEVE R HUR W R A% O RHIE SR I B, 03l B N T ik 224540 5 Squeeze-and-Excitation (SE)VE:
RN, 12550 RE W6 A R0 SN 7] RUBE R 1% PR T9RRAE, [RIIN f B SE VR L 1645 B kAT
B IER E AL, M AR A X v s RS TE R M SSTERE T, DU AR ROBIE, SRTHFIE RIS KB L
W 2% AR i B 3 BT AL S AR R AR P SIS, JFlid Dropout HHELZIBRIUARTE ., a4z
JEETH IR HI TP o 3R A T R o A T MO T TR B A 5 St B A% 42 75 5 AN[H] » SpectraNet
W -4 ZEERYE SE R A B i I 2k BERS SO B 1R RS 2 REATIRR &2, AT
FHEINIE A XRF GG BRI .

| comBlok | Residual Block | SpectraNet

32-d

___________________________________

Squeeze-and-Excitation block

! U g, mmmm 2= pm X
: /' 1x1xC 1x1xc\,,
B

BatchNorm

ReLu
H
MaxPool
c @
R e L ; e J
— — — — —
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Figure 2. Schematic diagram of SpectraNet structure
[& 2. SpectraNet &5t R = [E

3. &R5118
3.1 BB ST EEESIRNLE

3.1.1. BERMEHEZENBEYE

W 3(A)~(D)FR, SKEGEEL T GSS-5. GSS-17. GSS20. GSS23 PUff it 5 - 3F £ 1 ) 6 1 AT 72
S5, AT GGG airPLS BVEAE R vE, b ELIIEE T B0 airPLS 454 i Wi B AR 15 S b1 30
MG Rk . WA HAORE, TR airPLS Sk T L 588 Se A T o 58 fl il 42 R i, X8RI Stk
G ORFF— B, (HAEE S0, 5B 5SS B M s AR A B IR X BURAE BRI E s M S, AHEAR
R “Je . BEPHE” SEIREAR SR airPLS FA AR AT FAMNE 73X — 50, B RS (R B At 2k
FARPIE, SOEET RIMELH A LK.

N T PR M S AS T INE A R, AU IWT. SNIP FIJE Tt airPLS 456 e i
PRI e il THEVETE DU R 88 BIEAT R, A& 4(A)~(D)FizR, SNIP J7VETE i W (8 BT 5y Yic 21 e T 7
51, FEn EEGERIE WA, LB SR G 2 I 0L BRI HER RS A T IWT J5 A e Ak
s BARRIDGHT, A BRI AU, BRI T 8 SRS .
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Figure 3. airPLS vs. improved airPLS-gaussian convolution background estimation
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Figure 4. Comparison of background curves derived from different background estimation methods
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3.1.2. HEEESERY

T ARMAFE AL R LTI R A R AL TH ) SOCRIRE R B G R R, TIMEES

RoTRZAMANE, TR

F T REE RO HEIIER . RIS CR B S B AE 2, T AR A IR 4ok

RORRIE S AT FIL I HERE . AL LLES)E Zn (K, =8.63keV ) ARFFEXT &, Xt 22 fr E K brife 1

SRR RIS A/ N AR i (IWT) . R42:(SNIP)RIE T 2t airPLS

i G AR T S AL T RA AT

Hocbr. il 5 fron, RS ARREGGEEIE, R SR SRR E RS EgE, @ =
HERMERE, RRHBAAFEMEL, A RERF R SR E tH 38U 5 0 RIR LM S R/ 1R
1, MR AN [F]8F Se A BR B IR 1

T AN B TS SRS, FTCAE H SNIP 7EXF 22 Fh 3R Sk A7 15 oAb, AR R E
A E 2RO 2 T IR GG R A B4R, AR R2(E NF%E T 0.08, sSiRss 388 SNIP 7E Zn JL R MAEIE
AET S ST AR A B &G A, IR A IR IR/ ik B ARTE J 4G AU d 0, & 28 1) S i
- REEHETE T 0.005, (HIH G FIREIEIL A LHERGE, /0t IWT 76 L3R S b TR R B KA

Eo MHXNTSE, T airPLS

i AR T ST EIE A E T R R S 2 R EIRT T

0.018, [l PISKINALLA FATHIESS, KRB 7 AHT SOt T IEAE T Sl vh I R R AR 2 1, ik
B T ARIOBRAERA R 55 5L 08, el E S8 “ T3 .
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Figure 5. Comparison of linear regression results under different background estimation methods
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3.2. &T SpectraNet B+ E & B T FBIFHHISLILEE

AWHFN T St E R O EOBAR B KGR, A EDXRF il SO0 3R sl AT u il i &,
ARy 40kV, TAEHJEN 100 pA. 5 RE SRS FIBEHLIRZ M, 70 0%t 22 43 [ 5K bn itk 4 3%
FEARIIE 3 UC, AT ot airPLS 45 & MG BRI S AS THEIE A BT 1 kR, PR Ak B
Ja RS 2 SpectraNet H Il gk, FRAAENEFI5) T IRAE G POL HLE R TR R Wl AR R, 45
RBHENER 1R,

Table 1. Structure table of SpectraNet model
%= 1. SpectraNet # R

JERMY PN Ly SRS SR
LTI (1,2048) (1,2048) - 0
Convld (1,2048) (32,1024) Conv (1532, k=7,s=2,p=3) 224
BatchNorm1d (32,1024) (32,1024) "B 64
ReLU (32,1024) (32,1024) - 0
MaxPool1d (32,1024) (32,512) k=3,s=2,p=1 0
ResidualBlock (32,512) (32,512) 2xConv (32—32,k=3,p=1) 6272
SEBlock (32,512) (32,512) 3254532 (r=8) 256
Convld (32,512) (64,256) Conv (32—64,k=3,5s=2,p=1) 6144
BatchNorm1d (64,256) (64,256) »nph 128
ReLU (64,256) (64,256) - 0
ResidualBlock (64,256) (64,256) Zxcon‘f/"(agﬂgf (=3 24,832
SEBlock (64,256) (64,256) 64—8—64 (r = 8) 1024
AvgPoolld (64,256) (64,1) output_size =1 0
Flatten (64,1) (64, - 0
Dropout (64, (64, p=01 0
Linear (64, 2) 64x2 + 2 (bias) 130
ZH & 39,074

TEEET XRF G 1) L3 E & 8 0 K05 PR HIIAT S, PR — A “” B “/” =3k
)@, K4 GSS5. GSS17 Fll GSS20 %5 22 1 [H K L3 h Fn = & B MARHEE, BHAC N:  “HFs” 5
CRMBRRT SRR R I 0 2R R R AT A AT U A e b 3R R R G 3R S SR TS Y AR R
R, BRI “HibR” br%s. AWML ESEICE Zn AN R, G GB15618-2018 (14 \ R ILANE
] GRb A SR B B — AR P 48 e KU A A (IR T) ) WA XU e, AN | pH A R AR A
B FoH L3R S R T RIS P TRE(E, IR A pH EARHE R E N 5.5 <pH<6.5, HiIN Zn HIFiiE
{E9 200 (mg/kg), SAJE45 BT T IRE S S bR TR B 5 B AT AR e, ARic g B 78 66 4y LIRS
(22 1 B bR R R 3 0K), A 42 L EERE R CREAR 7, 24 Oy LIERESCOY R . KX
ek dfn i N\ 3] SpectraNet t, 37 38 5 4 @ T K BB ARG AR A,

P pH A bR i€, IERES pH EA4E K2 8EP/E 5.4 £ 6.5 28], X2 KRZEEN K
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& EAE K pH EVE . 2435 pH (S XSGR, rTRE 2 SR 0 8 IR s R SRR, AT
MR A i, PRI DG 7E[19], AN pH L A Bt FEbsE L afirp G Jmu R i5 4
1 RS i 2B B A 2 2 i

Table 2. Risk screening values of heavy metals (unit: mg/kg)
2. EEBRLEMNKEIFIRECERSG: my/kg)

JLHE pH<55 55<pH<6.5 65<pH<75 pH > 75
Cr 150 150 200 250
Ni 60 70 100 190
Cu 50 50 100 100
Zn 200 200 250 300
As 40 40 30 25
Pb 70 90 120 170

N ATV B 4 0 R IR FE AR AU B (M RE, AWFFURA T 3 HT A8 IR TE A AR B )2 Ak e
71, KB BAREBENL 3 AN KRR T, FRBENER 2 N FEEAIIGERINGHE, K
R L ATFEMENRER TYHEREVEAS . %7580 T BT BENLEXT PR BCR 52 m, I HRESE 7 1 )
AR TR E R LI R BE BRI R P, ASHEFE Accuracy (MERiZ). AUC. PR-AUC (Precision-Recall). F1 7
HOR Recall (IEFEA T | 2)/E8 FZ ML RES R br . HatSE AT

Accuracy = TP+TN (3.1)
TP+FP+TN +FN

TP ppo FP
TP +FN FP+TN

Fr, TP (TruePositive): SEFRNIEIS H I A IEZRIAEAE; TN (True Negative): SEBRN 5128 H 1l
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M R, T E A IR R AR SR T, HBUEYEEIN[0, 1], XIRFrE T 1 R BR S
JhE SR . PR-AUC IR — ML R, {H PR #iZk/E L Recall (4 [H12R) Jyfkh, Precision (K5
Ry NP TR . AT

(3.2)

TP
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Figure 6. Confusion matrix of the accuracy of K-fold cross-verification of Zn element exceeding the standard (K = 3)
6. Zn TTRBIRFIF K IR EIEERZERBERE(K = 3)

N T 0 RGPS AT BRI 1 SpectraNet ALAYFA R, A TEE R FANBR G, K H —Htoe
R A B 2 R d 7y 2585 A SpectraNet H1, JFRI 3 8 IR UEREAT XS LE . dlI 4 3 o, AR GiHE
BT RIPE RAE TR, £/ MEARI SR 2328 €W, SBUPRIERE T . AT, SpectraNet
ARG A RAE AT TR ORI, @R BB SE TEE JINUEIZE I ZRid e vh REAS il 4+ 4%
TS R B AL 5 2 RZ ARG &, A BOBIR L 7 Ba R, MITIAE 5 58 oo 3B b FAE 55 R
Bt t, EW] T SpectraNet #5784 e A AR BOG L AL -

Table 3. Cross-verification of Zn elements exceeding the standard (K = 3)
7= 3. Zn wERBIRFIR] K 3R IIEK = 3)

Fik Accuracy (%) AUC (%) PR-AUC (%) F1 (%) Recall (%)
SVM 95.24 90.47 92.38 91.86 875
BEHLAR 96.43 99.11 98.42 95.58 92.85
XGboost 86.9 92.26 89.53 87.88 83.33
Logistic [A]1 93.75 875 91.65 95.15 875
SpectraNet (ours) 97.91 99.7 99.53 98.46 95.83
4. &g

Bk airPLS Jy ikl i LA B E pR B/ T RS R A T R, A RERTE T 3 XRF OGIE 32k
FLIERERE o ZTTIEAERIE G SEBL 1 AR A P77 MR ZE MR LA 18 22, KIEIG 58 1 XRF i (%€ & 73
Prieds. @it mlrERuEsda, NS — DT, AT IR R 4 HIREE B R Zn TR U i
Bt - SpectraNet #5784 5K ] 22 JUSE —4EA5 AR 0 26 X Tl AL BT HEAT 2 UCRRAE SR I, SEBL 1 X i 2 2
BHERIR . IR FE B AE VI ZRANIRAE B BRI AL F5 20 K RE 70, BE S AT BR AL 15 Bt rh SR B 2%
BR, & Zn @A FHER . ol )32 IE S SpectraNet #2745 & BT T 3% Zn 75 343803,
JEBLH RAF R AIAT M 59 0. SRR I SO MG GR U6 Zn 55 Uk, R RERS R
AR MR BUREA R AR AR XU o SIS R W], %07 RAE 22 4 R R bR 3R AR (3t 66 410 R Hdh) -
ARG R Zn {5 96 s, N Bl DU ARG G KU AL SR AT SE T B B, ARHETEIEM T i
() airPLS + & &M SpectraNet B 7E -3 Zn 5 GAG il o B0 Rk, D9 B s v G i) PRodl iR ) 42
BT AT R B AR
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