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摘  要 

TDLAS技术的核心在于利用吸收谱线的峰形、峰位和线宽等特征来反演气体浓度等关键信息。然而，实

际探测中不可避免地会受到光源不稳定、热噪声及干涉条纹等复杂噪声的干扰。这些噪声会淹没信号细

节、扭曲峰形，严重影响测量精度，尤其是在低浓度检测场景下。传统的去噪方法往往难以在有效抑制

噪声的同时保持谱线关键形状特征的完整性。为解决这一难题，本文提出了一种结合ResNet-1D与

Transformer优势的混合神经网络框架(RTDNet)。该模型利用ResNet-1D强大的局部特征提取能力作为

编码器，捕捉谱线的多尺度局部结构。同时，在瓶颈层引入集成了卷积前馈网络的Transformer模块，

借助其自注意力机制来建模全局长程依赖关系，从而更好地识别和剔除复杂背景噪声。随后通过解码器

和跳跃连接恢复信号细节。此外，针对处理长光谱数据的工程需求，模型还引入了窗口化滑动推理与重

叠相加策略以满足计算约束。实验验证表明，RTDNet在不同信噪比条件下均能显著提升信号质量，有效

降低误差，并在强噪声背景下稳定保持谱线的峰形与峰位特征。 
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Abstract 
The core of TDLAS technology lies in utilizing characteristics such as the peak shape, peak position, 
and linewidth of absorption spectra to invert critical information like gas concentration. However, 
practical detection inevitably suffers from interference caused by complex noise sources such as 
light source fluctuation, detector thermal noise, and interference fringes. These noises obscure sig-
nal details, distort peak shapes, and severely degrade measurement accuracy, particularly in low-
concentration detection scenarios. Traditional denoising methods often struggle to balance effec-
tive noise suppression with preserving the integrity of critical spectral shape features. To address 
this challenge, this paper proposes RTDNet, a hybrid neural network framework that combines the 
strengths of ResNet-1D and Transformer. The model leverages the powerful local feature extraction 
capability of ResNet-1D as an encoder to capture multi-scale local structures of the spectra. Mean-
while, a Transformer module integrated with a convolutional feed-forward network is introduced 
at the bottleneck layer, using its self-attention mechanism to model global long-range dependencies 
to better identify and eliminate complex background noise. Subsequently, signal details are recov-
ered through a decoder and skip connections. Furthermore, to address engineering requirements 
for processing long spectral data, the model incorporates windowed sliding inference and overlap-
add strategies to meet computational constraints. Experimental validation demonstrates that RTDNet 
significantly improves signal quality and effectively reduces errors across varying signal-to-noise 
ratios (SNRs), while stably preserving peak shape and position features under strong noise condi-
tions. 
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1. 引言 

可调谐半导体激光吸收光谱(TDLAS)作为一种成熟的气体检测手段，因其响应快、选择性强、适于在

线测量等特点[1]，在工业过程控制、环境监测与燃烧诊断等领域得到广泛应用。TDLAS 的定量测量通常

依赖于对吸收谱线的峰位、峰形与线宽等信息进行拟合或反演[2]，而这些信息对噪声和漂移十分敏感。

在真实测量条件下，光源功率起伏、探测器与电子学噪声、机械振动以及温度压力波动等因素会共同作

用，使得光谱中同时出现随机噪声与缓慢变化的基线扰动，进而导致峰值偏差、线型畸变和拟合不稳定，

尤其在弱吸收、低浓度或长光程条件下，信噪比不足往往成为限制测量精度与可靠性的关键瓶颈[3]。因

此，研究能够在抑制噪声的同时尽可能保持谱线形态与物理可解释性的去噪方法具有重要意义。针对

TDLAS 光谱去噪，传统方法多基于固定滤波或变换域阈值策略(如移动平均、Savitzky-Golay、小波阈值、

VMD 等) [4]。这类方法实现简便，但其核心假设往往难以覆盖复杂工况下的噪声形态：参数取值稍有不

当就可能造成谱线过度平滑、峰位漂移或细节丢失，且在不同噪声水平、不同谱线宽度与不同基线漂移

条件下难以实现统一的最优设置[5] [6]。近年来深度学习为一维信号恢复提供了新的途径[7]-[9]，卷积网

络能够有效学习局部峰形结构并抑制高频噪声，但其感受野增长通常依赖堆叠或下采样[10]，面对跨谱段

的长程相关性(例如整体基线趋势、不同谱线之间的耦合变化)时仍存在建模不足。相比之下，Transformer
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的自注意力机制具备显式全局建模能力，适合捕获长距离依赖[11]，但在长序列光谱上直接应用会带来较

高的计算与存储代价，并且纯注意力结构缺少对谱线局部连续性的归纳偏置，可能影响峰形边缘等细节

恢复。基于以上问题，本文聚焦于“峰形保真–全局一致–工程可用”三者兼顾的 TDLAS 光谱去噪需

求，提出一种卷积编码器与 Transformer 瓶颈融合的端到端去噪框架。该方法以 ResNet18-1D 编码器提取

多尺度局部特征并将序列压缩至低分辨率表示，在瓶颈处引入带卷积前馈(Conv-FFN)的 Transformer 以同

时学习长程依赖与局部结构先验，随后通过反卷积解码器逐级恢复分辨率并输出去噪光谱。为适应长谱

段数据的推理开销，本文采用滑动窗口与重叠相加(Overlap-Add)策略实现全长重建，降低显存与计算压

力并减弱窗口边界伪影。该框架旨在对于不同信噪比与复杂噪声条件下稳定抑制噪声、保持谱线关键形

态特征，并为后续的谱线拟合与浓度反演提供更可靠的输入。 

2. 原理及系统 

2.1. TDLAS 气体检测技术原理 

可调谐二极管吸收光谱技术(TDLAS)以朗伯比尔定律为基础物理模型，结合激光波长调制法(WMS)
可提升系统的抗噪能力[12]。具体方式为在激光器的输入端添加一个低频的扫描信号，使其发出的激光频

率能扫过气体吸收中心频率，同时叠加一个高频正弦信号对其进行调制，其光强调制形式可表示为 

( ) ( ) ( )0 0 1 sinI t I u t tη ω ϕ= + + +                                 (1) 

式中， ( )u t 为扫描锯齿波信号， 0I 为激光器平均光强，η为正弦信号的调制幅度，ϕ 为调制相位。电流

调制光强的同时，频率也随着一起被调制，可表示为 

( ) ( )0 sinmt tν ν ν ω= +                                    (2) 

式中， 0ν 为激光器的中心频率， mν 为频率调制幅度。根据朗伯比尔定律 

( ) ( )
0 e Lc

tI I t α ν−=                                      (3) 

式中 ( )0I t 为入射光强， tI 为经气体吸收后光强， ( )α ν 为气体分子吸收系数，L 为光程长度，c为气体浓

度。当入射光扫描频率恰好等于气体吸收中心频率时，吸收系数采用 Lorentz 线形函数描述，且满足弱吸

收条件下，气体吸收后的光强可表示为 

( )
( )

0 0
0 2 21 sin

1 cost
I Lc

I I t
m t

α
η ω

ω
= + −   +

                            (4) 

由式(4)可知，第一项为背景光强，第二项为携带气体浓度信息项，其中 0α 为中心频率出气体吸收系数，

m 为调制系数。对式(4)傅里叶展开，二次谐波系数主要由吸收项贡献，经数学推导可得 

( )
2

2 2 2

4 2 2
1

mH m
m m

 +
= − 

+ 
                                 (5) 

经锁相放大解调后浓度与二次谐波信号幅值关系为 

( )2 0 0 2fI I Lc H mα∝ − ⋅                                    (6) 

由此可知，二次谐波信号幅值包含浓度信息，解调出二次谐波幅值即可准确推算出气体浓度。 

2.2. 气体检测装置 

实验中选择的气体为 N2O 气体，吸收谱线中心频率 2189.825 cm−1，在此频率无其他气体吸收峰干

扰，且有较强吸收。在大气压 1 atm，温度 296 K 条件下进行检测，以电流调控的方式驱动激光器扫描氧
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化亚氮气体分子的吸收峰。 
检测装置结构如图 1 所示，系统中的光源选择 4566 nm 可调谐分布反馈使激光器，信号发生器 1 产

生 10 Hz 的锯齿波信号，信号发生器 2 产生 10 KHz 的高频正弦波信号传入激光驱动器来调制激光器输出

的频率，激光经过准直后通入气体池，光程长为 3 m，经过吸收后的光通过光电探测器接收，将光信号转

化为电信号，传给锁相放大器提取二次谐波。最后将所得谐波信号传递给 PC 端滤除噪声，通过式(6)的
关系反演出气体浓度值，从而达到气体浓度检测的最终目的。 

 

 
Figure 1. Schematic diagram of TDLAS gas detection device 
图 1. TDLAS 气体检测装置示意图 

3. 方法 

3.1. 模型结构 

针对 TDLAS 气体检测系统中，微弱的吸收信号容易受到随机噪声的干扰，且很难与宽频带周期性的

气体池干涉条纹分离，本文设计一个名为 RTDNet 的模型框架，结构信息如图 2 所示，其内部具体构造

如表 1 所示，输入预处理阶段采用了 50%重叠率滑动窗口机制，将任意长度含噪光谱切片为固定长度的

子片段，切片后的光谱首先进入 1D-ResNet18 编码器，为了在加深网络层数同时，避免梯度消失和特征

退化问题，信号由 4 个级联的残差模块进行下采样，其输出可表示为 

( ) { }( ),l l l ly h x F x w= +                                    (7) 

其中 ( )l lh x x= 表示恒等映射，用于保留原始信号流， ( )F ⋅ 是残差映射函数，包含了一维卷积、批归一化

和 ReLU 激活函数。网络利用小尺寸卷积核在局部感受野内提取波形的形态特征，将原始的一维序列映

射为高维的抽象特征向量。这一过程不仅能有效滤除高频随机噪声，更因卷积平移不变性使模型能适应

由激光器温漂导致的吸收峰位置漂移。编码器输出的深层特征图随即进入位于 U-Net 瓶颈层的

Transformer 模块，在此，多头自注意力机制(Multi-Head Self-Attention)发挥核心作用，注意力分数的计算

基于查询矩阵(Q)、键矩阵(K)和值矩阵(V)，公式为 

( ), , max
T

k

Attention soft
d

 
=   

 

QKQ K V V                             (8) 

其中 Q、K、V 均由编码器输出的特征图映射而来 QZW=Q ， KZW=K ， VZW=V ，Z 为编码器输出的深
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层特征序列， kd 为缩放因子。它打破了卷积的局部限制，计算序列中每一个特征点与全局上下文的相关

性。模型通过分析全谱的波动规律，可以有效识别全局周期性的干涉条纹噪声，同时可以完整保留吸收

峰信号，完成信噪分离。经过全局校验的纯净特征进入解码器，通过转置卷积逐步恢复时域分辨率。为

了防止深层抽象造成的信号平滑与峰值衰减，解码过程引入了跳跃连接，该机制将编码器浅层中保留的

原始高频细节直接输入到解码器的对应层级，与深层特征进行融合。最终，各子序列片段的预测结果通

过重叠相加算法并在重叠区域取均值，无缝重建出全尺寸的去噪光谱。该工作流程确保了整个模型在强

干扰工况下，既能彻底抹除复杂的干涉条纹，又能高保真地还原气体的吸收特征。 
 

 
Figure 2. LTDNet network architecture diagram 
图 2. LTDNet 网络结构图 

 
Table 1. The structural information of RTDNet 
表 1. RTDNet 的结构信息 

No. Layer Name Kernel/Unit Size Filters (Channels) Output Size 

Encoder section     

1 Stem (Conv1D) 7 × 1, stride 2 64 256 × 64 

2 MaxPooling1D 3, stride 2 - 128 × 64 

3 Layer 1 (ResBlock × 2) 3 × 1 64 128 × 64 

4 Layer 2 (ResBlock × 2) 3 × 1, stride 2 128 64 × 128 

5 Layer 3 (ResBlock × 2) 3 × 1 256 64 × 256 

6 Layer 4 (ResBlock × 2) 3 × 1 256 64 × 256 

Bottleneck section     

7 Input Projection (Conv1D) 1 × 1 128 64 × 128 

8 Positional Encoding - - 64 × 128 

9 Transformer Encoder (× 6) nhead = 8, dim = 128 - 64 × 128 

Decoder section     

10 UpBlock 1 Upsample scale 2 - 128 × 128 

11 UpBlock 1 Fusion (Conv1D) 3 × 1 128 128 × 128 
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续表 

12 UpBlock 2 Upsample scale 2 - 256 × 128 

13 UpBlock 2 Fusion (Conv1D) 3 × 1 64 256 × 64 

14 UpBlock 3 Upsample scale 2 - 512 × 64 

15 UpBlock 3 Fusion (Conv1D) 3 × 1 64 512 × 64 

16 Final Conv (Conv1D) 7 × 1 1 512 × 1 

3.2. 数据集 

神经网络模型的训练需要大量实验数据集的支撑，实际上仅通过实验获得的数据量很难满足训练的

要求，并且实验中无法获得完美的无噪光谱真值数据提供给模型训练，所以利用 Matlab 软件根据实验的

基础条件下模拟出与真实信号相同的 3000 组不同浓度的 N2O 吸收二次谐波光谱用于训练和测试本文中

的模型去噪能力，同时增强模型的泛化能力。具体模拟形式为，随机生成浓度分布在 0 至 8 × 105 ppm 之

间的气室吸收数据，根据 HITRAN 数据库设置线强为 0.0538，选择 Lorentz 线形函数，每个样本包含 1024
个采样点作为数据集的真值标签。 

在实际 TDLAS 气体检测系统中，仪器噪声的主要构成部分是高斯白噪声以及光学元件表面反射形

成的干涉条纹噪声。高斯白噪声的来源为电阻等电子元件内部电子无规则热运动产生的热噪声和探测器

中存在的散粒噪声，根据中心极限定理，两种随机噪声的组合趋向于高斯分布，因此采用高斯白噪声(均
值为 0，方差为 0.005)来模拟。为了逼真模拟干涉条纹噪声，采用基于物理光学的艾里函数(Airy Distribu-
tion)来构建。两种噪声叠加在模拟的真值信号上构成了含噪声的二次谐波信号仿真数据集。该数据集涵

盖了弱信号被强条纹掩盖到强信号共存的场景，可以满足神经网络学习的要求。 
除仿真信号外，通过实际实验采集浓度为 0 ppm，1 × 105 ppm，1.5 × 105 ppm，5 × 105 ppm，1 × 106 

ppm，2 × 106 ppm 浓度的 N2O 气体吸收二次谐波光谱，每组浓度测量 1000 次，构成的测试集，用于验证

仿真数据训练出的 RTDNet 模型在实际应用中的降噪性能。在实验测得的数据集中选取一组浓度信号与

模拟出的浓度信号做对比，如图 3 所示。计算两个信号的皮尔逊相关系数来观察相似程度，相关系数 ( )R  
= 0.98，说明模拟的数据和实际数据高度相似，可以很好的与实验结果相拟合，在图 3 中可以看到模拟波

形和实际波形之间仍有一定误差，这部分误差来源主要是实际测量过程中真实的温度、压强和气体浓度

与理论有一定差异，并且在非吸收中心位置被非中心吸收位置被剩余调制中的相位差所影响，因此理论

线形与模拟线形存在较小差异。 
 

 
Figure 3. Comparison of real spectral signals and simulated spectral signals 
图 3. 真实光谱信号与仿真光谱模拟信号对比图 
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3.3. 模型训练 

为了最大化去噪保真度，模型训练采用均方误差作为损失函数，该函数可以量化网络重构输出 ŷ 与

纯净真值 y 之间的差异 

( )2
, ,1 1

1 1 ˆN n
i j i ji jMSE y y

N n= =

 = −  
∑ ∑                            (9) 

其中， N 表示训练批次中的样本数量， i 表示对批次内的光谱数据的索引， j 表示一条光谱采样点的索

引， ,i jy 表示第 i 个样本的第 j 个采样点的真实值， ,ˆi jy 表示第 i 个样本的第 j 个采样点的预测值。通过梯

度下降法最小化该函数，利用 Adam 优化器进行迭代。训练中当 batch 为 32 时模型滤波性能为最优，在

300 个 epoch 内收敛。 

4. 结果分析 

4.1. 仿真结果分析 

为全面评估 RTDNet 模型在二次谐波信号去噪任务中的性能，在仿真数据集中随机选择一组气体吸

收光谱为代表，直观比较了传统信号处理方法 EMD 和 Wavelet，以及一种经典的深度学习模型 U-Net 与
本文模型的降噪能力，图 4 展示了不同方法的去噪波形和相应的信噪比，图中干净的无噪信号(绿色虚线)
作为参照基准，原始含噪声输入信号(灰色实线)的初始 SNR 为 9.49 dB。观察传统方法的处理结果可知，

EMD 和小波变换方法虽然可以在一定程度上提升信号的质量，但仍存在明显局限性。EMD 方法将 SNR
提升至 15.71 dB，但其降噪后的波形(红色实线)显示该方法未能有效分离高频噪声，导致在光滑的基线和

关键的吸收峰位置仍残留显著的抖动与毛刺。相比之下，小波去噪(黄色实线)效果稍好，SNR 进一步提

升至 19.24 dB，整体波形也相对平滑了一些，然而在信号边缘处震荡仍非常明显，且对添加的干涉条纹

噪声毫无作用，这会对后续提取吸收峰值和线宽参数提取造成严重影响。深度学习的一维 U-Net 模型(紫
色实线)展现出比传统方法更强的噪声抑制能力，将 SNR 进一步提升至 22.93 dB，有效去除了大部分高

频背景噪声，尽管如此，其输出波形仍存在一定程度过度平滑倾向，这种现象导致吸收峰的峰值强度相

比真实值出现了衰减，且信号边缘的精细细节特征变得模糊。这主要是由于其“编码器–解码器”结构

中的信息瓶颈导致了部分高频光谱细节的丢失。与其他方法相比，本文提出的模型(蓝色实线)具有最优秀

的去噪能力，实现了高达 33.60 dB 的信噪比。从视觉角度上看，其输出波形几乎与标准真值完美重合，

在完整光谱范围内均保持了极高的保真度。这种卓越的性能得益于其独特的深度混合架构设计：ResNet
主干网络有效提取了局部特征，而集成入瓶颈层的 Transformer 机制则精准的捕捉了光谱序列的长程依赖

关系，两者互补优势使得模型在极高精度下区分有效信号和背景噪声，在彻底压制全频噪声的同时，完

美保留了二次谐波信号。信噪比相较于表现最好的 U-Net 方法具有超过 10 dB 的显著提升，相较于原始

含噪信号具有超过 24 dB 的巨大改善，有力地证明了其在 TDLAS 二次谐波滤波方面的有效性和先进性。 
从频率角度仔细分析几种方法的去噪能力，对每种方法处理过的二次谐波光谱做傅里叶变换，对比

如图 5 所示，原始含噪输入信号(蓝线)在整个频段内都呈现出了高幅值的随机分布，特别在低频区有多个

显著的尖峰。EMD 方法(红线)虽然降低了一定的噪声水平，但在低频段仍残留大量高幅值的噪声尖峰，

说明其在处理复杂低频噪声成分时能力有限。Wavelet (粉线)展现出在高频去噪的优势，然而在极低频段

去噪能力依然很难让人满意。U-Net 在高频段表现尚可，但在极低频段其残差幅值甚至超过 EMD 方法，

显示出模型在捕捉长程依赖和分离低频噪声方面的不足。相比之下，RTDNet (黑线)即使在前几种方法表

现最差的低频区间也能成功将残差幅值压制在极低的水平。最终，图 5 再次证明了 RTDNet 在全频段的

降噪能力。 
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Figure 4. Comparison of the effects of different filtering algorithms on simulated noisy second harmonic filtering 
图 4. 不同滤波算法对模拟含噪二次谐波滤波效果对比 
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Figure 5. Distribution of frequency residuals between original and filtered spectra 
图 5. 原始光谱与滤波后光谱频率残差分布 

4.2. 结果分析 

为了验证 RTDNet 的实际应用效果，将 TDLAS 气体检测系统采集到的六组信号使用 RTDNet 处理，

并以 6 × 105 ppm 浓度的实验样本作为代表，直观的对几种处理方法进行对比，结果如图 6 所示。从图中

可以看出，传统的 EMD 和 Wavelet 可以一定程度的去除高频噪声，使信号光滑一些，但仍存在一定程度

的抖动，且峰值位置偏高，对后续浓度测量结果的准确性仍有影响。U-Net 虽然平滑度较传统方法好了一

些，但是由于 U-Net 过度追求平滑，使吸收峰部位略低，会导致浓度计算产生误差。RTDNet 几乎完美还

原了二次谐波信号，无论从光滑程度和吸收峰位置来看，都与纯净信号几乎相同，与仿真数据结果类似，

说明 RTDNet 在实际检测中依旧有完美的表现。 
 

 
Figure 6. Comparison of noise reduction effects of different filtering algorithms on experimental data 
图 6. 不同滤波算法对实验数据降噪效果对比 

浓度检测精度评估 
通过对实验测得的五组信号使用 RTDNet 进行降噪处理后，对二次谐波信号峰值与气体浓度进行线
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性拟合，拟合结果如图 7 所示。线性关系表示为 0.0134 0.0064y x= + ，线性相关系数 2 0.9992R = ，二次

谐波信号的幅值与气体浓度具有良好的线性关系，证明经 RTDNet 降噪后的二次谐波信号能完美的反演

气体浓度。根据拟合公式对五组气体浓度进行反演，并对比其他方法的测量结果，平均绝对误差如表 2 所

示，实验结果显示，RTDNet 在浓度反演任务中实现了最优性能。与原始含噪信号相比，该方法将平均绝

对误差(MAE)降低了约一个数量级。与传统的 EMD 和 Wavelet 方法相比，误差降低了 2~5 倍。最关键的

是，与强大的深度学习基线 U-Net 相比，RTDNet 在所有非零浓度测试组中均表现出显著优势，特别是在

中高浓度区域，其误差仅为 U-Net 的 25%~30%。虽然 U-Net 在 0 PPM 时表现出极低的零点误差，但

RTDNet 在保持极低假阳性率(0 PPM 处误差仅 0.3%)的同时，展现了对微弱信号更优越的捕捉能力和在

全量程内极高的测量精度(最低 MAE 达 0.1293%)。这充分验证了结合局部特征提取与全局注意力机制的

模型架构在光谱定量分析中的有效性。 
 

 
Figure 7. Linear relationship between the maximum amplitude of the second harmonic and concentration 
图 7. 二次谐波振幅最大值与浓度之间线性关系 

 
Table 2. Absolute error of each filtering method 
表 2. 各滤波方法平均绝对误差 

方法 
各浓度测量标准差 

0% 2% 4% 6% 8% 

原始数据 4.6243 3.7913 3.6189 3.4690 3.3890 

EMD 2.2645 1.6453 1.5096 1.4217 1.3422 

Wavelet 1.2092 0.7448 0.6690 0.6018 0.5472 

U-net 0.1030 0.6022 0.5561 0.5588 0.5860 

RTDNet 0.3025 0.4574 0.1863 0.1293 0.1714 

5. 结论 

基于 ResNet 和 Transformer 提出一种 TDLAS 气体检测降噪滤波算法 RTDNet，首先根据实验进行数
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据仿真，利用仿真出来的数据集训练模型，对训练结果分别从时、频域进行分析。结果表明，EMD 和小

波变换等传统方法无法分离信号中低频部分的噪声。对比 U-Net，RTDNet 去除低频干扰噪声的能力更加

强悍，并且更大程度上提高了二次谐波信号的信噪比。最后通过实验数据验证了模型的泛化能力，经

RTDNet 处理后的信号能更准确地还原浓度信息。由此可知，RTDNet 算法在 TDLAS 气体检测方面具有

很强的应用潜力。 
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