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Abstract

The core of TDLAS technology lies in utilizing characteristics such as the peak shape, peak position,
and linewidth of absorption spectra to invert critical information like gas concentration. However,
practical detection inevitably suffers from interference caused by complex noise sources such as
light source fluctuation, detector thermal noise, and interference fringes. These noises obscure sig-
nal details, distort peak shapes, and severely degrade measurement accuracy, particularly in low-
concentration detection scenarios. Traditional denoising methods often struggle to balance effec-
tive noise suppression with preserving the integrity of critical spectral shape features. To address
this challenge, this paper proposes RTDNet, a hybrid neural network framework that combines the
strengths of ResNet-1D and Transformer. The model leverages the powerful local feature extraction
capability of ResNet-1D as an encoder to capture multi-scale local structures of the spectra. Mean-
while, a Transformer module integrated with a convolutional feed-forward network is introduced
at the bottleneck layer, using its self-attention mechanism to model global long-range dependencies
to better identify and eliminate complex background noise. Subsequently, signal details are recov-
ered through a decoder and skip connections. Furthermore, to address engineering requirements
for processing long spectral data, the model incorporates windowed sliding inference and overlap-
add strategies to meet computational constraints. Experimental validation demonstrates that RTDNet
significantly improves signal quality and effectively reduces errors across varying signal-to-noise
ratios (SNRs), while stably preserving peak shape and position features under strong noise condi-
tions.
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WS, ARG G5 R om N
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m N R B @) BRI, R RS B R STk, SRR S

(4)

4| 2+m?

SHFBOARR GRS SRS SIRERR A

Iy o —lgagle-H, (m) (6)
FBETT AN, RS SR E A VRS, AR TR H RO DR B B AT A At Bt SRR
2.2. SEKRNRE

SEIGHIE BRI SR N NoO A4k, MBS 26 04l 2189.825 cmt, 7R AN JE HAh S AR I Wi T+
P, HEBEWRI. E£RSE Latm, &5 296 K 4648 R TAEI, DL 1 i 7 sREKsh ot 28 A

DOI: 10.12677/japc.2026.151004 30 Ly PR R=Svi


https://doi.org/10.12677/japc.2026.151004

LEH %

ISR 701 IR U

Rl e B a5 M an sl 1 B, RGP EIRE R 4566 nm mTEIE /A RIEEOL R, B9 KER 17~
10 Hz BRI 5, 155 R A4S 2 7728 10 KHz 1S AUE 52 U5 51 A0S & R U 1 0T 25 i
i, WO e BREN A, SRR 3m, Gl RIS FOGIE I BRI B, KoME 5
WSS, MBSO I . e R i i i S ks PC ImdBRRIE A, il 3((6)M
KA AR EEARL, WA B AR IR BEAS I ) f5e 24 H 1

R
DFBROLE  EEH I I

WoIREh > —O— St | m— ]

>>>>>> Pc ]

fea% AL SOk

Figure 1. Schematic diagram of TDLAS gas detection device
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3.1. #REGHY

EFXF TDLAS UK RS, Es MRiE 5 2 5 2 BIBEHLE S TP, HLARMES 584000 i v
ST &L B, AL — %N RTDNet BBINESE, 2545 Bl 2 iR, 3R ki
W 1R, FNTUREERY BCR A T 0% & 2 3 i DL, AT SR B o U v g [ e K BE )
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BRI, (55 B 4 AN R ZE BHGEAT N RAE, Hfh T RoRh
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1 ReLU BiE g, W4 HI /N R ST G AL AE o 0 RS2 B N AR BT I TE SRR AE, K SR AR 1) — 4857 51
SN AR RAE ) B X — I AR A B A BB R S AL 7, B DR RS R AN AR P AR R R
H 30 25 TR 5 B0 R g A B RS o g D A AR UK 2 R AE T B B HE N AL T U-Net JiEE 1)
Transformer B3, eI, %3k HEE IHLHI(Multi-Head Self-Attention) & ¥E 4% CE R, 13 & S0 505
BT EWMMFEQ). BAFE(K)FERFEV), AXA
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Figure 2. LTDNet network architecture diagram
[ 2. LTDNet f4&£5H[E
Table 1. The structural information of RTDNet
7 1. RTDNet EEHIER
No. Layer Name Kernel/Unit Size Filters (Channels) Output Size
Encoder section
1 Stem (Conv1D) 7 x 1, stride 2 64 256 x 64
2 MaxPoolinglD 3, stride 2 - 128 x 64
3 Layer 1 (ResBlock x 2) 3x1 64 128 x 64
4 Layer 2 (ResBlock x 2) 3 x 1, stride 2 128 64 x 128
5 Layer 3 (ResBlock x 2) 3x1 256 64 x 256
6 Layer 4 (ResBlock x 2) 3x1 256 64 x 256
Bottleneck section
7 Input Projection (Conv1D) 1x1 128 64 x 128
8 Positional Encoding - - 64 x 128
9 Transformer Encoder (x 6) nhead = 8, dim = 128 - 64 x 128
Decoder section
10 UpBlock 1 Upsample scale 2 - 128 x 128
11 UpBlock 1 Fusion (ConvlD) 3x1 128 128 x 128
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12 UpBlock 2 Upsample scale 2 - 256 x 128

13 UpBlock 2 Fusion (Conv1D) 3x1 64 256 x 64

14 UpBlock 3 Upsample scale 2 - 512 x 64

15 UpBlock 3 Fusion (Convl1D) 3x1 64 512 x 64

16 Final Conv (ConvlD) 7x1 1 512 x 1
3.2. HIEE

P ) 28 1520 1) I 0 R R B S B B AR (0 S 4, S S S e SR AR (1 i = AR AE T 2 I 2R )
PR, I H S50 IEIE RS 56 36 B TE MG FUE BRI A AN SR, BT AR Matlab 1R 3E 5256 1)
Al R 5 S S AR A 1 3000 AN AR 2 1) N2O IR AL — Vil i e i F - I Gl ik A 5L h
(R LM R 7y, [l SRR Y R AR ) BARBLRIE AR, BENLA: BOKEE /3 A 7E 0 28 8 x 10% ppm 2
() () = SO, AR HITRAN #5454 B 285y 0.0538, 4% Lorentz ZBTE iR 4L, BAMFEAGLE 1024
AN KRR ST N BR AR I BB AR 25

TESERR TDLAS SRR GoH, AR 75 1) 32 B B 43 A2 iy 107 1 e 7 D e 2 e A 3 T 34 T
PRI SR S0 o s 37 11 e 7 %) SRRy P BEL &5 P TG A PR 1S FL T R U4 2 77 A ) gt 7 AP 2%
FRAELE B HICRIGE 7, AR O AR BR e 2], PR ARBE AL P IR A A  1m) Tmy oA, DSOSk A s B 1 M 7 (35
B9 0, 757279 0.005)RAE M. Ay 8 HAAUTF PP RS0, SR A T- W30 2 1) 3L H iR 4 (Airy Distribu-
tion) RAGEE . AR 7S B INYEBLADL K BB 5 AR T & s 1) OS5 0 AU 4 . 2R AR
w1395 SR A S 5 2R M5 S AE I 5, T DL R R N 4 5 ST IR R

KA BAS 54N, Wi SERRIL K R AR E N 0 ppm, 1 x 10% ppm, 1.5 x 10° ppm, 5 x 10° ppm, 1 x 10°
ppm, 2 x 10° ppm ¥ 5 (1) N2O RIS — U i, R4 & 1000 I, FRII4E, H-TI010F
P FLAHE NI ZR 1) RTDNet AEAUTE S bR FH i B PE R . 7E 5250015 1 B AR e L — 4IRS 5 5
AL IR LA SO0 B, Al 3 s o THEEANME 5 1 B R OG RBOR LSRR AFEE , ARG R 2 (R)
=0.98, U5t B ASLAUL P 500 AN S R B o BEARBL, T DUR B i 5 st 4 A G, 7E & 3 i ml LA BRI
TER SRR 2 A — B R 2, IR 5 22 R R O B SERR I i P b B SE R . s A SRR
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Figure 3. Comparison of real spectral signals and simulated spectral signals
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4. GRGH
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ASCAERL I BENRRE ST, 18] 4 JoR T AN R 7 i 1 R MR B AR L (S R b, 11 PP T3 IR JE MR A 5 (B (B R 28)
VERZMIEE, TR 65 M A A M5 5 (K SE ) )G SNR 4 9.49 dB. WAL 48 )5 12 1 Ab B 45 R W] A1,
EMD F/INE AR T5 5 AR AT LAAE — E AR FE AR THE S IO PR, (HAF/E IR )RR I%E. EMD 777206 SNR
$ETHA 15.71.dB, {HILFEMR 5 FIBTR (ALt SEER) W iZ NERBEA R B g e, S B0 iR 2 A
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U SR, R, M OB — e R LI LTI, X GG B AT U A e {5 PEE A
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MI2mERE ), SEBLT Wik 33.60 dB fUfEMEEL. WAL LA, HithBoe L St R E SR ES,
258 B A B DR 1 AR e (0 DRI EE o SR i 10 P REAS 2 T L AMVRR (TR B TR 45 2R BTt : ResNet
FF MG RERI T RABEHE, M8 SRS 1 Transformer AL RS HE IR 161 P 41 B FE A
KA, P LAMES AR AR R L T DX A R0 5 RS S, PRI I i A e 7 (1 [, 58
ERE T UGEBE T . E M R T R AFI U-Net 777 R AT 10 dB 1 RERTE, MHECT ih
EWRE T BATRIL 24 dB MECKEGE, 47 J730IE W] 7 HAE TDLAS B g Iy T 1A R A e itk o

MR S FEAF AR 70 M LR 5 AR R BE 77, 0 R 5 A BT 1) — U ' 1 Al e B AR 3, X L
WE 5 s, IR S AN AS T (B2 BB N B 2 DU T e B A BE AL A, R AAEARAR X AT 24
WFEHIRIE . EMD J5iA(ZL4R) BARFRAR 1€ BUMR A /KT, (EAEAR A B AT B B A vy M L 14 M 7 2R 0,
B FUTE A AT AR AT 75 B Ay R 0 B Wavelet (7 22) FE8 I HA 7E ol 25 e AR 4, SR T PE AR AT B
FMRAE ST HARRAELE AR U-Net 7E M BERBLM W], (BRI B LA 22 R (e EL 22 EMD T,

7 HBE A 7l S AR AR 7 B AR S T T AN A2 o MHEEZ R, RTDNet (B Q) BIEFE | J LA 7754
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Figure 4. Comparison of the effects of different filtering algorithms on simulated noisy second harmonic filtering
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Figure 5. Distribution of frequency residuals between original and filtered spectra

5. RIGAE SRR EENERZES

4.2. GRS HT

N T B AE RTDNet ¥ SEBR M AR, K TDLAS SR R G0 R4 2 (1) /S 4145 518 | RTDNet 4b 2,
%u6mwwmmF%¥%ﬁ$¢%ﬁ%,Em%ﬁnﬁiﬁﬁ&ﬁﬁﬁm,%%WQGW% M
ATCAE . f£400) EMD A1 Wavelet 7] DL— 52 P25 1 25 B m e 75, (45 5o — L, (EAIFE— 2R
fktal, HUEMEA B, X S0 4 %m&%&%ﬁ%moUNai%$ﬁE&%%ﬁ&ﬁT~
S, fHZ T U-Net BB SRS, (RIS, < SBURE I H 4% 2% . RTDNet JL P 583810
JE T ZRIEEAE S, Toie AT R EE AR S i B R, # S A5 5 JLFAEE, 507 BB 45 SR,
Wil RTDNet 7552 Bl K IH A 56 K 1R I

Noisy Signal
—— EMD
—— Wavelet
U-Net
—— RTDNet (Ours)

Intensity (a.u.)

{ “\‘ M U]M I ”M

WLW " W

“ (
{"'h m‘“

’mv

—0.02 q

—0.04 q l

—-0.06
0

200 400 600 800 1000
Sampling Points

Figure 6. Comparison of noise reduction effects of different filtering algorithms on experimental data
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Figure 7. Linear relationship between the maximum amplitude of the second harmonic and concentration

B 7. DRIERRBEBRAKESREZELEXR

Table 2. Absolute error of each filtering method

F 2. BEBFEREITRE

FURFE I AR 2
Jiik
0% 2% 4% 6% 8%

SRR 46243 3.7913 3.6189 3.4690 3.3890
EMD 2.2645 1.6453 1.5096 1.4217 1.3422
Wavelet 1.2092 0.7448 0.6690 0.6018 0.5472
U-net 0.1030 0.6022 0.5561 0.5588 0.5860
RTDNet 0.3025 0.4574 0.1863 0.1293 0.1714
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