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Abstract

Diabetic kidney disease (DKD) is a leading cause of mortality among diabetic microvascular com-
plications, closely associated with the aberrant activation of the advanced glycation end product-
receptor (AGE-RAGE) pathway. In this study, seven active components of Atractylodes macrocephala
(based on OB = 30% and DL = 0.18 criteria) were screened from the TCMSP database, yielding 349
shared targets of Atractylodes macrocephala-DKD. Protein-protein interaction (PPI) network anal-
ysis identified AKT1, TNF, and SRC as core targets. KEGG enrichment analysis revealed the AGE-RAGE
signaling pathway as a pivotal therapeutic target for DKD. Molecular docking studies confirmed sta-
ble binding between atractylenolide III and the RAGE protein, with a binding energy of —7.1 kcal/mol.
This study is the first to elucidate the multi-target mechanism by which Atractylodes macrocephala
alleviates oxidative stress and inflammatory responses in DKD through inhibition of the AGE-RAGE
pathway, providing a theoretical basis for traditional Chinese medicine in DKD treatment.
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B R I "5 975 (diabetic kidney disease, DKD)/& HE R &% & WL I RUIALE I AR 0E 2 —, W2 4RI S &
BUR, ORISR, WRIRER ML ARG ZEL R A 4SS 2 ER RS AR, H ATilE IR TT LAE
MR =, AETCIEA PR, RIURR 285 2l T TR 2 0 EE 2], AR
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Jir ) 75 3 FL S 1 B 7 (OB > 30% nT i el i i o oA R 88 i i %, DL > 0.18 7] 78 55 80% LA L Uik
2R EVa AR B R AR G5 2 REME . ) [5][6], FE7E PubChem #diE e A & 3k b iR TG 1 ik
231 SMILE =,

2.2. BARTEMERSTEREE R F0HE bR s 15 s M X 28 A T

e EARTEE R 9 SMILE U\ SWISS $udfs e AR B AR HIAE 1, I TCMSP #ds Z2 Al STITCH
R P TR0 P B R IR IS NN o 8 25 R T R I T AR O S5 K BT AR B S RN UniProt 250905 P
SIA5 R S A5 PR R B 5 3R R 44 FR M 1D #E TTD. GeneCards. OMIM #4521, L “ diabetic kidney
disease” A BaE 10 B PR B 9 AH OGHE RUEEAT R 2R

2.3. AARFEERS - (ERR R MEHE

Rt “1.27 BUEREAM AR “WEVERD " S “TTREAEFIEE A" 72515 Excel Ftxh, A1
PEMIZET ki (node), A FA AR SCIE I i (edge) &% . >R Cytoscape3.10.2 #ift, #yirpeiaAR “imtk
By - VEFAE R HIAZ AR M 2%

24. BRFEMRS - BR - BRFEBENESTSEL

{3 Cytoscape3.10.2 BAFHIEE IR “ 3P0 0oy - $E 5 - J@ER” 22 HNEHR, o hER
B I ARG P 3 P B ASORIRE PRPS 5 973 G TR s i N String B, BHATEE A HAE AT, KA String
B S R 1 EAEABT 45 R (tsv. 4 ) 5\ Cytoscape B B3R BUR HLAEF M %% . 12 FH CytoNCA 4
PR I 2% 5 ) B AE (dlegree), 0 ik PR AR A i VD O BEEREL A, 1 R 8200 X B S0 1) L A
FIRFFTHF “1.37 ST R A ARG R S - 1E R #E A4S, S Cytoscape A DS (Merge) D fit S i
BRY, TERGREN “ OARVETER Y - $E A - @B - R E 7 L.

25 Y RSERS

£ DAVID Hdfz P i\ FIAR 5 DKD AR I SG B #E s 2 (], f B R4 i i2E4T GO M (PE i 72 BP.
7 ¥ Hife MF MZHJR AL CC) M KEGG % & M, I FEAHTE Ko X P AL MNBIRBEAT HEF (B3
BI{E P <0.01), JLAERHHERHAMAEYERESGER, HMAEGENTFELE G, BATEITE.

2.6. PFIHEMR

KA TR ARIGAE (A A AP O 5 1 O BE fUE IR SE SER ). TRk AR HER T 3 1)
o gy, K5 ARG DKD /5L S b HE AT 3 AIA% OB AT 4 B2 8% . 1 JE M pubchem %4
J (https://pubchem.ncbi.nlm.nih.gov/) 3k BXEC A AH B (1 — 2% 4> F 4544, M PDB %4 & (https://www.rcsh.org/)
R AR I 0 T 4540, FIF Pymol 34 2Bk 2 R IIK S FRIGILBR R, 2 AREA S T 5N
AutoDock Vina 1.1.2 BT /3 FXHE, 1847 50 KBNS, DAgi AR <—5.0 keal/mol 1F 41 BAFEH
(bR, 5 B VORI FH Pymol BR324 7 AT Ak R s S B U AN B /K AR ELAE Y, B6F 19 AR 4y 5 AGE-RAGE
I 1 45 AR

3. &R
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DOI: 10.12677/jcpm.2026.51058 416 i R AL B 2


https://doi.org/10.12677/jcpm.2026.51058
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/

X AE

2E,8E,10E-atractylentriol)14- 7, ¥ 3 -12-F B e ot £ -8- )i 3K (1 R = i (14-acetyl-12-senecioyl-2E,8Z,10E-at-
ractylentriol) . 12--F H. ¢ % -8- & 20 4 R = 8% (12-senecioyl-2E,8E, 10E-atractylentriol) . a- 7 #f fig % (-
Amyrin)SE 5 2 A 5 HE B AL, XAk S OO Rl B BT R R AT

Table 1. Active components of Atractylodes macrocephala Koidz

F 1. BAREMRS
MOL ID Molecule Name MW OB (%) DL
MOLO000020  12-senecioyl-2E,8E,10E-atractylentriol 312.39 62.4 0.22
MOLO000021  14-acetyl-12-senecioyl-2E,8E,10E-atractylentriol 355.44 60.31 0.31
MOLO000022  14-acetyl-12-senecioyl-2E,8Z,10E-atractylentriol 356.45 63.37 0.3
MOL000028  a-Amyrin 426.8 39.51 0.76
(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R,5S)-5-pro-
MOLO000033  pan-2-yloctan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro- 428.82 36.23 0.78
1H-cyclopenta[a]phenanthren-3-ol
MOL000049  3p-acetoxyatractylone 274.39 54.07 0.22
MOL000072  8p-ethoxy atractylenolide I11 276.41 35.95 0.21

3.2. BRFEMER A S DKD &R0 & a0

WL %5 SwissTargetPrediction 11 TCMSP #48 Ze il (L ARVEPE R T AERE 1L, £ 5155 367 4>
A, [HE, M GeneCards. TTD Al OMIM % DKD AHZCHE AT, Lt 15082 AP 4 s . B =H RE
oM, KRB 349 S FHR-DKD FE[FBE A (K 1), HH 8 N5 AGE-RAGE il #%(AGER. NFKB1. MAPKI,
AKT1. IL6. TNF. VEGFA. HSP90AA1) . % JHk .

18 349 14733

AMK DKD

Figure 1. Venn diagram of common targets among Atractylodes macrocephala active components, action targets, and DKD

1. BAREMRS - (EM¥ES-DKD #EHESFEE

3.3. BAR - #5 - FERF 'SR (DKD) X EBMLE o Hr

I TR AR SR PRI B 0 RS SRR 44 PP RN 4% (14 2), {4 ] Cytoscape 3.7.0 B4k 4T ]
WAL, P HE 349 AT R 4712 Skl o AE I FAG AR o A A DGR AR N S 8, i 2 T, fAE) 1
AMLE 10 AN RURT 45 2530 (A% 0 BB 2L PPI I ZS ], SRS I A% 0 B8 s R TR 433 2 AKT L. TNF. SRC.
EGFR. CASP3. ESR1. HSP90AA1l. MAPK3. PPARG Fl PTGS2, it A% Lo#E 3K 13 S8
(# 2).
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Figure 2. PPI network of key targets in Baizhu-DKD interaction
2. AAR-DKD X585 PPI F4%

Table 2. Topological parameters of core target genes

2. DB R EENRINSE

Rank Name Degree  Subgragh Eigenvector Information LAC Betweenness
1 AKT1 157 1.52E+22 0.18210812 13.179726 32.828026 9042.12
2 TNF 154 1.31E+22 0.16906089 13.158602 29.454546 10034.13
3 SRC 142 1.22E+22 0.16343974 13.066058 30.267605 10153.697
4 EGFR 127 1.33E+22 0.17038317 12.928428 35.464565 3877.132
5 CASP3 123 1.27E+22 0.16631454 12.88669 35.13821 3070.552
6 ESR1 116 1.08E+22 0.15348579 12.807518 32.344826 5095.066
7 HSP90AA1 113 1.08E+22 0.15388414 12.770934 32.884956 3625.1665
8 MAPK3 108 8.94E+21 0.13976586 12.706014 28.537037 3970.6396
9 PTGS2 99 6.51E+21 0.11928521 12.574845 25.272728 4540.346

10 PPARG 99 6.91E+21 0.12284748 12.574845 26.181818 3644.952

3.4. AARFEERS - B MEaE

FIF Cytoscape 3.9.1 #EE AR “IEPEM S - MEHHE &S - B " PIZE(E 3), HA s 32 AN 57 NEE
Ay + 10 NEE ) AN 83 45id. HhANHTE R, 14- 2B BLOGERFE-8- I AR =15 AGE-RAGE il
TNF. AKT1. EGFR &2 AMZ Rl i M s e FE e, R H AT ReIE o 2 70 5 v R 2 #0H) DKD iR .

35.GO 5 KEGG B EE ST

¥ RS ERE ST GO ThAS B 00T, L3R5 42 44E¥5d 2 (biological processes, BP). 40 &4 il
2H. 43 (cellular components, CC). 38 24> FIhfE(molecular functions, MF). 435I H %S5 HEA AT 10 21K 4%
HEAT TR T (B 4). GO s R ErR, ARSI RS E QBRI RO R AR, 18
VAT R M R R PR, 3R 4R R4 M ) RE B AR E PN e B, X B PR e IR T B
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Figure 3. Active component-target interaction network of Atractylodes macrocephala
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Figure 4. GO pathway enrichment bubble plot of Baizhu-DKD targets
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Figure 5. KEGG pathway enrichment analysis of Baizhu-DKD targets
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3.6. S FRHEWIE

NV A ARZ O 5 A AREIT DKD 08 22 811 454 B 1 S A BAE I 7 50, AHiF 52K
AutoDockVinav1.2.2 BT 73 7 X2 . 93 OB EHES BT = A7 BAZ O PE R N 14- 2B 3L &% BLG
P 3 -8- ) 2 1 R =% (14-acetyl-12-senecioyl-2E,8E,10E-atractylentriol) . 14- 2. F 3&-12-T B ik 3 -8- i X,
AR =¥ (14-acetyl-12-senecioyl-2E,8Z,10E-atractylentriol) Al 12-T- HL ik Jt-8- ;g 2 A R =¥ (12-senecioyl-
2E 8E,10E-atractylentriol); A =47 4% 0o £ AKT1. TNF Al RAGE 1E AWt xF (14 6), %3 3 MO
#E S (AKTL. TNF. RAGE)/&iE it 2 [ HAEM 25 (PPI) /- HT A1 KEGG JE ¥ & L e 1, AKTL 5 TNF
7t PP M2 B B =il degree {H; 11 RAGE HE3E PPI W4 Hh i iz i % 46 101 i, {EAE N AGE-RAGE
5T R R AR, 5 DKD R B B QIR R i o X IR SRS BE I T Mgk R AT A,
ST RS AV I AR E M . AutoDock Vina 45 R BN, ARG S EAARIATT DKD %0 #E 55
g G e /N T -5 keallmol, H v 14- 2,1 B -12- T 5L 5 Bt 2k -8- i =X 1 R = I (14-acetyl-12-senecioyl-
2E,8Z,10E-atractylentriol) 5 RAGE 4 & FH o, Ho4h&fe v—7.1keal/mol (1% 7), T&RiAS E I EHE (ALA-
76, ALA-84. GLY-1), UtBAX 455 RiF HZ R E b3 e 5By T B ka4 .

4. i

B PRI B3 SRR S 2%, W Rt AR R 3 . AR AL ORE R AR e )« AL SR JE Js B 5 22 TR 3R
MEAEA, SECEIERE ARG R R G871, MaT P ya T DA sl fopE . Mo i e S xRy
ENE, HATEEYEREREA BN E[8]. AR @M S B, HE 7 H IR R S
BT R 2 1y 2R RS (H L EARAE IR a4 B W [9] o I 2% 24 382 B vh PR AR WA B2 45
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Figure 6. 3D molecular docking structures of 14-acetylatractylodin-8-trans-atractylenolide 111, 14-acetyl-12-senecioyl-8-cis-atractylenolide
111, and 12-senecioyl-8-trans-atractylenolide 111

6. 14-ZBEZERME-8-RRXAR=E, 14-ZBHE-12-F BEAFBE-8- IR AR=E, 12-FBABE-8-KRRXAR=EH
DT

N RGN VAR WE PRI B R 52 AL SR A TR K

AT TCMSP B8 FE i 3045 AR 7 PGt (B ZER R W28 B RS F RN EY)),
PRI “ iy — a7 2 o AR B 2 o Y R FH KR o S 0 TR BRI . TR S 1. 11,
I 55 BAMEFERE U, 33 B TRT R R T T000E JR 05 B 08 B R o TE MR < 3 X 50 E B0 AKT L
TNF. RAGE %40 5 BT RAFHISE A0, 2o TNF S 5005 N 1 CgaE se @ 2 ik B /N BEREELL K B /)N
B AR TR R R R . SRR ALR I, R S RERE R E R SRS S 00 N R g i
NF-xB 15 5@ #E b, FEIK TNF. IL-6 S5 4 R [10];  [RII vl id g iE AKTL 21 PIBK/AKt (5
T OCE R R HURYE, JFIE I PN AGE-RAGE @ B B AT £F 410 dt JE , 5 AT 7E ¥ 431 e 45 31 2
28 2 PR AR FE W A [11] [12] .

GO Difig s, EURTTOME R B S U RRAL . RIE B AE AW R, S, 24 E
HREII AT RE B V) CEk . KEGG g/ i #is 7 2 5% 05 Sl : O AGE-RAGE {5 5iBERIEN
R DRR A S5 A A Comie AL, Je P B M ek SR SR A 2R =) (AGES) SR B, B S 80U T 2 41
LA R B /N ER IS JIC TSI JE[13] [14]; @ EGFR {5 5 i@ B IE 4% FiiF ERKL/2 F1 STAT3 #fkfk, =5
B NE b R S oy A R, %08 B T S AR PR R AT 4E A TR [15]; ® N i
5B RE S SRRV, HRH S 2 DR E TR 5000 5 2T, (e 2 40 o pe == A 35 EL A
PFTI[16] [17]. 7> TRHES REIR, ARZ=EEHEMT 5 RAGE. AKTL 4L HFBURE & ), 1R
e T A T8 B R B A OR A

AW FCALTI AR 7 NGRS T REVEF T 349 NEIEHLS, RIL T R “Zlir - ZHE - 2@
B8 (R FARR A5 o EARERE, 5 AR ZHEI R I ADME S8R IR BRI 7 b . R TE I String
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Figure 7. Molecular docking binding energy results of 14-acetylatractylodin-8-trans-atractylenolide 111, 14-acetyl-12-sene-
cioyl-8-cis-atractylenolide 111, and 12-senecioyl-8-trans-atractylenolide 111
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