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摘  要 

脑小血管病(Cerebral small vessel disease, CSVD)是老年人血管性认知障碍及混合性痴呆的重要病因，

其影像学标志性表现——白质高信号(white matter hyperintensity, WMH)与患者执行功能、信息处理

速度等认知领域损害密切相关。近年来，影像组学(Radiomics)作为一种基于高通量特征提取的影像分析

方法，通过挖掘常规医学图像中人眼难以辨识的定量特征，为CSVD相关认知障碍的客观评估与机制研究

提供了新的技术路径。本文系统综述了影像组学在该领域的研究进展，重点探讨其在WMH异质性量化、

认知功能预测及病理机制解析三方面的应用价值。研究表明，影像组学结合机器学习与多模态影像融合策

略，能够有效克服传统影像评估中存在的主观性强、可重复性不足等局限，显著提升对CSVD患者认知状态

的早期识别与精准评估能力。未来，通过建立标准化的数据处理流程、增强模型可解释性，影像组学有望

在揭示血管性与神经退行性认知障碍的共同病理机制方面发挥关键作用，推动精准神经科学的发展。 
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Abstract 
Cerebral small vessel disease (CSVD) is a key cause of vascular cognitive impairment and mixed de-
mentia in the elderly. Its characteristic radiological expression, white matter hyperintensity (WMH), 
is directly linked to cognitive impairments in areas such as executive function and information pro-
cessing speed. In recent years, radiomics—an image analysis method based on high-throughput fea-
ture extraction—has developed as a new technical pathway for objectively assessing and understand-
ing CSVD-related cognitive impairment and its causes. This method accomplishes this by extracting 
quantitative information from traditional medical photographs that are difficult for the human eye 
to detect. This comprehensive review investigates radiomics research achievements in this field, with 
an emphasis on their utility in assessing WMH heterogeneity, predicting cognitive performance, and 
understanding pathogenic pathways. According to studies, combining radiomics with machine learn-
ing and multimodal image fusion strategies effectively overcomes the limitations inherent in tradi-
tional imaging assessments, such as high subjectivity and low reproducibility, significantly improv-
ing the early detection and precise evaluation of cognitive status in CSVD patients. Moving forward, 
radiomics has the potential to elucidate the overlapping pathogenic pathways underlying vascular 
and neurodegenerative cognitive deficits, boosting precision neuroscience. 
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1. 引言 

脑小血管病(cerebral small vessel disease, CSVD)是一组累及颅内微小动脉、小静脉及毛细血管的慢性

脑血管疾病，其主要病理特征包括血管壁玻璃样变性、纤维化及内皮功能障碍。这些微血管病变可导致

脑实质灌注不足及慢性缺血，进而引起神经纤维脱髓鞘、轴突损伤和神经网络功能紊乱[1]。影像学上，

CSVD 的典型表现包括白质高信号(white matter hyperintensity, WMH)、腔隙性梗死、血管周围间隙扩张、

微出血以及脑萎缩等[2]。流行病学数据显示，CSVD 约占缺血性卒中的 20%~25%，是老年人群认知障碍

和痴呆的主要病因之一[3]。随着人口老龄化加剧，CSVD 的发病率持续上升，其造成的社会和医疗负担

显著增加。  
传统影像学评估主要依赖人工分级或视觉评分，如 Fazekas 评分、Scheltens 评分或腔隙计数等，但
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这些方法主观性强、重复性差，且难以准确反映病灶的微观结构与组织复杂性[2]。在疾病早期，脑组织

微结构和代谢异常往往先于宏观结构变化出现，因此，仅凭肉眼识别的影像特征，难以捕捉 CSVD 的早

期或轻度病理改变。这种局限促使研究者探索更为客观、可重复的量化影像学方法，以实现对 CSVD 病

变程度及认知风险的精准评估。 
影像组学(radiomics)的兴起为这一领域提供了新的研究途径。该方法通过对影像进行高通量特征提取

与分析，能够从常规磁共振成像(MRI)中挖掘潜在的影像生物标志物，用以反映组织异质性及微观结构改

变[4]。结合机器学习算法，影像组学可建立定量模型用于疾病分类、预后预测及个体化风险评估。相较

于传统评分体系，影像组学不仅显著提高了定量化与客观性，还能揭示病灶纹理复杂度、灰度分布、空

间结构等隐藏特征，从而弥补传统影像学的局限。 
近年来研究表明，CSVD 与阿尔茨海默病(Alzheimer’s disease, AD)等神经退行性疾病在血脑屏障

(blood-brain barrier, BBB)功能障碍、脑灌注下降及白质退变等方面存在病理重叠[5]-[7]。WMH 作为 CSVD
的核心影像学表现，在脑小血管功能障碍与神经退行性过程之间可能起桥梁作用[8]。基于影像组学的定

量分析可揭示 WMH 的空间分布特征与纹理异质性，有助于深入理解其与认知功能下降之间的关系。 
综上所述，本文将系统综述影像组学在 CSVD 相关认知障碍研究中的最新进展，重点讨论其在 WMH

定量分析、认知功能预测及病理机制探索中的应用，并结合多模态影像与人工智能方法的发展，展望其

未来在临床转化中的潜在价值。 

2. 脑小血管病与认知障碍的关系 

除 WMH 外，腔隙性梗死、微出血、脑萎缩及血管周围间隙扩张等 CSVD 影像学表现亦对认知功能

造成影响。当多种病灶共存时，患者的认知损害更为显著且进展迅速[9]。例如，腔隙性梗死可中断白质

纤维束传导通路，破坏额叶–基底节–丘脑环路；微出血则提示毛细血管脆弱性增加，与认知衰退风险

呈正相关[10]。 
近年来，越来越多的证据支持 CSVD 与神经退行性疾病在病理机制上存在交叉。研究发现，两者共

享的病理机制包括血脑屏障的完整性破坏[11] [12]，以及由此引发的、自我延续的慢性低度炎症状态，表

现为外周及中枢炎症因子水平升高与小胶质细胞/星形胶质细胞的持续异常激活[13] [14]。这些过程相互

交织，构成一个“内皮损伤–渗漏–炎症–进一步损伤”的恶性循环，共同驱动脑实质损伤与认知衰退

[15]。WMH 通过破坏白质纤维完整性、降低局部脑血流灌注，可能加速 β-淀粉样蛋白(Aβ)的沉积，从而

促进 AD 样神经退行性病变[16]。反之，AD 相关的神经元变性及神经炎症亦可进一步损害脑血管调控功

能，形成“血管性–神经退行性”双向作用机制[17] [18]。这一病理互作不仅加剧了脑网络功能失衡，也

为影像组学从多病因角度揭示认知障碍机制提供了理论基础。 
在此背景下，影像组学技术被认为是研究 CSVD 相关认知障碍的有力工具。通过提取 WMH 区域的

高维影像特征，可量化其内部纹理复杂度、灰度非均匀性及空间异质性，从而反映不同病灶类型的潜在

病理差异[19]。相比单纯的体积测量，影像组学特征能更灵敏地捕捉组织微结构变化，有助于建立更具解

释性的认知功能预测模型[20]。未来，结合临床指标、生物标志物及多模态影像特征的综合模型，或将实

现对 CSVD 患者认知风险的早期识别与动态评估[21]。 

3. 影像组学方法学概述 

影像组学的研究流程主要包括影像预处理、特征提取、特征选择与模型构建四个阶段。合理的特征

工程与算法选择是模型性能与可解释性的关键。 
首先，在影像预处理阶段，通常需对 MRI 数据进行标准化、配准、降噪及灰度归一化等操作，以减
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少不同扫描仪、参数及受试者个体差异对特征计算的影响[22]。近年来，自动化分割算法的引入(如 U-Net、
nnU-Net 等深度学习网络)显著提升了 WMH 区域的分割准确度和一致性，为后续特征提取提供了可靠基

础[23]。 
其次，在特征提取阶段，影像组学从感兴趣区域(region of interest, ROI)中提取包括形态学特征、一阶

统计特征、纹理特征以及基于小波变换的高阶特征等。形态学特征反映病灶的体积、表面积及不规则度；

纹理特征则通过灰度共生矩阵(gray-level co-occurrence matrix, GLCM)、灰度游程矩阵(Gray-Level Run-
Length Matrix, GLRLM)等方法描述影像的空间复杂度和灰度分布异质性[24]。特征选择是模型建立前的

重要步骤，其目的是在高维特征集中筛选出最具诊断和预测价值的参数。常用方法包括最小绝对收缩与

选择算子(Least absolute shrinkage and selection operator, LASSO)、递归特征消除(Recursive Feature Elimi-
nation, RFE)及随机森林(Random Forest, RF)特征重要度排序等。这些算法可有效避免模型过拟合，提高模

型的泛化能力[25]-[27]。 
最后，模型构建与验证阶段通常采用机器学习或深度学习算法。传统的非深度学习算法(non-deep 

learning algorithms, NDLA)如逻辑回归、支持向量机(SVM)和随机森林，具有可解释性强、计算复杂度低

等优势，因此在 CSVD 相关研究中应用最广。深度学习算法(deep learning algorithms, DLA)则通过多层神

经网络自动学习高维特征，如卷积神经网络(Convolutional Neural Networks, CNN)和图神经网络(Graph 
Convolutional Network, GNN)，可在无需人工特征工程的前提下实现特征学习与分类预测。在一项多中心

研究中，一个基于 T2-FLAIR 影像的深度学习模型，在预测 CSVD 患者认知功能下降时表现出卓越的泛

化性能，其在内部与外部验证集上的结果均证明了该模型的稳健性[28]。然而，该类模型对大样本数据依

赖较高，且模型“黑箱化”限制了其临床可解释性。  
总体而言，NDLA 适用于样本量有限、特征维度较高的 CSVD 研究，而 DLA 在自动学习与非线性

特征捕获方面更具潜力。未来方向在于多模态融合与可解释性模型的发展，如将 WMH 影像组学特征与

弥散张量成像(diffusion tensor imaging, DTI)或功能 MRI 指标结合，以揭示白质微结构破坏与神经网络功

能紊乱之间的耦合关系[29]。例如，Lin 等利用 T1、fMRI 与 DTI 三种模态 MRI 特征融合建立 CSVD 轻

度认知障碍分类模型，其融合模型在训练集和验证集均展示出优越性能，该模型在训练集(AUC = 0.926)
与独立验证集(AUC = 0.878)中均表现出稳定、优异的判别能力，同时其 81.93%的诊断准确率也显著超越

了传统模型。这一性能优势凸显了该模型在 CSVD 临床实践中实现认知障碍精准筛查的实用价值[29]。
此外，Xiao 等在其综述中也强调了影像组学与多模态融合在认知损伤评估中的重要性，为上述融合策略

提供了理论支持[8]。 

4. 临床指标与传统影像学模型对 CSVD 相关认知障碍的预测 

4.1. 临床指标模型 

CSVD 的临床表型复杂，其认知功能受损往往与多种危险因素共同作用。流行病学研究表明，高龄、

高血压、糖尿病、高同型半胱氨酸血症及慢性炎症反应均是 CSVD 的重要危险因素[1] [30] [31]。在这些

因素中，高血压被认为是最核心的致病环节，长期血压波动可造成小动脉管壁玻璃样变及血脑屏障通透

性增加，进而诱发慢性缺血性损伤[32]。 
此外，体液生物标志物如神经丝轻链蛋白(neurofilament light chain, NfL)与胶质纤维酸性蛋白(glial fi-

brillary acidic protein, GFAP)已被证实与 CSVD 病变负荷及认知损伤程度显著相关，反映了轴索损害与星

形胶质细胞活化[33] [34]。 
结合多种临床参数建立的综合预测模型正成为研究热点。例如，Teng等构建的列线图模型纳入年龄、

教育程度、糖化血红蛋白、血清同型半胱氨酸水平及总 CSVD 负担等指标，可预测 2 型糖尿病患者转化
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成轻度血管性认知障碍(Vascular cognitive impairment, VCI)的转化风险[35]。 
然而，临床指标模型仍存在一定局限：其预测能力受样本异质性及指标稳定性影响较大，且缺乏对

脑结构损伤的直接反映。因此，将临床信息与影像特征结合的多维融合模型，可能是未来精准预测的方

向。 

4.2. 传统影像学模型 

传统 MRI 定量分析多采用白质高信号体积(white matter hyperintensity volume, WMH volume)或 Faze-
kas 评分评估 CSVD 负荷。尽管 WMH 总体体积与整体认知水平呈负相关，但该指标无法充分揭示不同

脑区病灶的功能差异。研究表明，额叶下通路 WMH 更显著影响执行功能与注意力，而颞枕区 WMH 则

与记忆及空间定向损害密切相关[36]-[39]。 
功能 MRI 研究进一步显示，CSVD 患者默认模式网络(default mode network, DMN)和额顶控制网络

(frontoparietal control network, FPCN)连接效率下降，与执行功能障碍及信息加工迟缓密切相关[40]。这些

结果提示，CSVD 所致认知障碍不仅源于局部病灶破坏，更与神经网络整体效率下降有关。然而，传统

影像分析依赖人工判读，主观性强、可重复性差，难以量化病灶纹理特征及空间复杂度。此外，各研究

间影像阈值、分割算法与定义标准不统一，也限制了结果的可比性[2]。因此，引入影像组学与机器学习

技术，是实现 CSVD 影像定量化与认知预测的重要突破口。 

5. 白质高信号(WMH)在影像组学研究中的应用 

5.1. WMH 的定量负荷与异质性评估 

WMH 的体积测量或 Fazekas 视觉评分是 CSVD 研究中最常用的宏观指标，但这些宏观评估方法主

要反应病灶负荷，而难以揭示病灶内部的微观结构特征与组织异质性[36] [41]。影像组学通过高通量特征

提取技术，可从 T2-FLAIR 影像中获取数百至数千个定量参数，对 WMH 的纹理复杂度、灰度非均匀性

及空间分布特征进行系统性刻画，从而可能反映局部组织结构完整性及潜在病理差异[4]。 
多项纹理分析与影像组学研究表明，基于灰度共生矩阵等方法提取的“熵(entropy)”和“对比度

(contrast)”等指标与 WMH 的病理负荷及认知功能呈非线性相关关系，其能够在一定程度上区分不同临

床表型，并提供超越体积测量的影像信息价值[42]。然而，这些研究普遍样本量较小(多在百例以下)，且

部分仅进行了单中心或内部验证，限制了其外推性和模型泛化能力。此外，不同研究间的特征提取参数

及影像标准化流程差异较大，也影响了结果的可重复性与比较性。 
WMH 的空间分布同样对认知域受损具有重要影响。多项研究指出，额叶或额下通路的 WMH 与执

行功能和加工速度下降相关，而颞枕区或颞叶 WMH 则与记忆和视觉空间能力受损相关，提示影像组学

可用于量化 WMH 的“位置–功能”关系，从而为传统体积指标提供补充性信息[43]。但现有证据主要基

于横断面分析，尚缺乏纵向随访研究验证因果关联。 
在纵向研究中，Shu 等基于基线 WMH 影像特征结合临床参数建立预测模型，发现影像组学特征可

能作为非侵入性生物标志物用于监测白质状态和 WMH 进展风险[44]。该研究提示影像组学在动态监测

与风险分层方面具有潜力，但模型的外部验证样本较少，且缺乏多中心、跨平台重复性测试，其结论仍

需进一步大规模验证。 

5.2. WMH 影像组学在认知障碍预测中的应用 

影像组学在 CSVD 相关认知障碍研究中的核心目标之一，是实现对个体化认知风险的精准预测。近

年来，多项研究基于 WMH 影像特征结合机器学习算法，探索预测模型的构建。Huang 等在多中心样本
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中基于 T2-FLAIR 的 WMH 影像组学特征开发了 Transformer 模型，用于预测 CSVD 患者的认知下降，其

模型在验证集中的 AUC 达 0.859，优于传统机器学习模型[28]。但该研究的样本主要来源于单一族群，外

部验证样本相对有限，且部分特征缺乏明确的生物学解释，可能影响模型在真实人群中的推广应用。 
除单模态影像分析外，多模态融合策略在近年来的研究中表现出更高的预测潜力。Lin 等提出将 T1

加权成像、功能 MRI 与弥散张量成像(DTI)等模态特征融合，用于 CSVD 患者认知状态分类。所得多模

态模型在区分个体是否存在认知损害时表现出较高的 AUC (0.878)和分类准确率(81.93%) [29]。同时该研

究与传统机器学习模型进行对比，均显著高于任何单一模态。其特征重要性分析发现，前额叶与扣带束

DTI 参数(FA 降低、MD 升高)及默认模式网络(DMN)功能连接减弱是关键预测因素。这提示多模态影像

组学可能反映不同层次的结构与功能异常，从而提供更全面的认知风险评估。然而，该研究同样存在样

本量较小、模型过拟合风险及缺乏外部独立验证的局限，需在更大规模前瞻性队列中加以验证。 

5.3. WMH 的病理异质性与亚型划分 

影像组学为识别 WMH 的潜在病理亚型提供了新的研究视角。不同 WMH 亚型可能反映不同的病理

机制与疾病进展模式。近年来，研究者尝试利用聚类或分型算法，基于 WMH 的纹理、灰度分布和空间

异质性等影像组学特征，对其进行数据驱动的分类分析，以期揭示其病理学差异[45]。 
Bretzner 等的研究发现，不同患者的 WMH 在纹理复杂度、灰度非均匀性及空间分布特征上存在显

著差异，提示其具有明显的影像学异质性[42]。进一步研究表明，部分 WMH 区域呈现出“灌注受限型”

特征，表现为纹理“对比度”下降及弥散受限，即分数各项异性降低( Fractional Anisotropy, FA)，而平均

弥散率升高(Mean Diffusivity, MD)，这提示局部低灌注及微血管灌注可能存在功能障碍[5] [46]。而另一

类“结构紊乱型”WMH 则常表现为熵(entropy)升高及灰度非均匀性增强，这可能反映髓鞘脱失与轴索断

裂的微结构破坏[41]。此外，有研究发现部分 WMH 区域与 FDG-PET 的低代谢区具有空间重叠，提示其

可能属于“代谢低活型”，与神经元功能受损具有密切相关性[47] [48]。 
这些研究为理解 WMH 的病理异质性提供了重要线索，但其大多基于单中心、样本量有限的探索性

分析，聚类结果对参数设置高度敏感，缺乏统一标准，尚难形成可推广的亚型划分体系。未来研究应结

合多模态影像及组织学验证，进一步明确不同 WMH 亚型的生物学基础及临床意义。 

6. 临床转化潜力、挑战与未来展望 

影像组学为 CSVD 及其相关认知障碍的早期识别、风险评估与疗效监测提供了新的量化手段。已有

研究表明，基于 WMH 影像组学特征构建的模型，在一定程度上能够在认知下降发生前 2~3 年识别出高

危个体，为早期干预争取关键时间窗口[49]。在治疗反应方面，研究发现经血压、血糖等危险因素干预后，

CSVD 患者 WMH 区域纹理“均匀性”等特征存在部分显著改善，且与神经心理测验得分提升同步，提

示影像组学指标可作为脑组织微结构恢复的敏感标志物，有望成为客观的疗效评估工具[44]。 
尽管影像组学在 CSVD 研究中展现出显著潜力，其临床转化仍面临多维度挑战，主要包括技术层面、

临床应用层面及法规伦理层面三个方向的挑战。 

6.1. 技术层面：模型泛化与算法可解释性 

目前不同研究间的影像采集协议、预处理流程和特征提取方法存在较大差异，导致模型可重复性与

外部验证能力不足。尤其是深度学习模型“黑箱化”问题明显，限制了结果的临床可解释性[50]。若未来

能够通过建立多中心共享数据库、统一特征提取标准(如 IBSI 指南)等措施可能在一定程度上能够提升模

型的泛化性能与数据安全性。同时，应结合可解释人工智能(Explainable Artificial Intelligence, XAI)算法，
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如 SHAP 或 Grad-CAM，实现模型决策依据的可视化，增强其临床可信度。 

6.2. 临床应用层面：整合现有诊疗流程与报告标准化 

目前影像组学尚主要停留在科研阶段，缺乏与现有 CSVD 诊断流程的系统融合。不同中心使用的分

析平台、ROI 定义及结果解读方式差异较大，难以形成统一标准。未来应推动建立标准化影像组学报告

模板，并与神经心理评估、实验室及神经影像指标协同使用，从而实现量化指标的临床落地。通过多中

心验证研究明确其在风险分层、疗效监测中的临床价值，是推动转化的关键。但是否能够将模型应用于

临床，还仍需多方面考量。此外，数据异质性与样本量不足仍制约了多中心验证与推广应用。未来研究

应聚焦于模型标准化与大样本建设，推动多中心数据共享与统一流程制定；同时强化影像、临床与分子

标志物的多模态融合，探索具有生物学可解释性的预测模型。 

6.3. 法规与伦理层面：数据隐私保护与模型监管 

影像组学涉及大量患者影像及临床数据，其存储、共享及算法使用需遵守相关伦理与隐私法规。目

前我国尚缺乏针对医学人工智能模型的统一审批与质量监管体系。未来应建立数据脱敏、访问审计与模

型备案机制，在确保数据安全的前提下促进科研与应用协同。此外，探索符合国家标准的医学评估体系，

将有助于加速模型从研究走向临床。 
综上所述，影像组学正推动 CSVD 研究由宏观结构描述迈向微观病理定量解析的相关研究。通过技

术规范化、临床集成化、管理体系化以及智能算法的不断完善，该技术有望成为连接脑血管病变与神经

退行性过程的关键桥梁，为认知障碍的精准防治提供坚实的科学支撑与伦理基础。 
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