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Abstract

Chronic kidney disease (CKD) is a complex pathophysiological process, with renal microvascular
endothelial cell injury, inflammatory responses, and fibrosis being the main causes of CKD. Mesen-
chymal stem cells (MSCs) and their exosomes (MSCs-exosomes, MSCs-EXO0), due to their immune-
regulatory and pro-survival properties, have become an emerging therapeutic approach for CKD.
They can inhibit inflammation and promote disease remission by secreting various anti-inflamma-
tory factors. In recent years, they have also been widely applied in clinical practice. However, many
of the underlying mechanisms remain unclear and require further exploration and research. There-
fore, this paper reviews the mechanisms and research progress of MSCs and MSCs-EXO in CKD, provid-
ing a reference for clinical physicians.
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1. 518

1811 B 9 (CKD) i E OB IE S A BT e o, FFEE>3 AN H, AR S . B FH 12 Wibs it
IRAEA: WEFLE > 30 mg/g B8iflithE /N ERiES #(eGFR) < 60 mL/(min-1.73 m?) [1]. HJwK & 7% H
AR R E IR T 5 AN Z R, R KDIGO #5/, CKD R NI R LK, sttt Q. &
$ . R RS2 AR E . H RS N VAT H bR AR PR RORE L o AR T
IR0 M F RS . A G R FI 25067, BARRRE SRR, (HA e H RRE I BE,
BYIFR—PEITEE, BT ROk SGE TS . 778541 i (mesenchymal stem cells, MSCs) /2 1] LA %
PR RN B SRR M 2 Re A0, o7 LA AR HM m 2 1% R 400 MSCs 1] 2 F A A4 41
MBS E IR, PlWEsE. RRRAZ. . FREERR2], BAZmaoigas. milmEne /. iy
REHIAE S1[3]. 8785 T4 AT A i Ak 44 (MSCs-exosomes, MSCs-EXO)AMY A FM A AR 5, i .
WAL TIREVE TR Y, 22 microRNA (MIRNA)FIE i, 5l 7 MSCs HIZEY) 4 . MSCs-Exo ¢
ZMEKE T RIS miIRNA #2052 0500 B 40, et (e g me . B o i A pe, 205 Ak
R AT, EMT AU /N ] AR R IR 15 4010 370 5 B DhRe[4], MSCs-Exo 75 11 'E IEORY
MU E AT 2, Gt — SRR A S BB 45 T MSCs-EXO 1 I FLHI LA K. CKD & L,
FHHXFEATTRIRE Tk R E— 2RIk

2. ik
2.1. MSCs

785 FA M (MSCs) R A [« BE IR WIS 2 MG B HEIEAE ). A0 A4 T S iEAR
LA, dnedE, MW7, s, DARIRHEE[S]. MSC ] DURSE EATHIRIE L N e 4l . pea 40, 4
A B AL AL . MSC 3& ] L™ AL 7 22 AR A DA -7 AN A 7, T A K PR A2 L R1 3 T ] 7 G 8 s o
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PUR WG SR B RN, FFEASUEE P78 2 s DI BRI . MSC 38 1T L™ AR AR UL
W, SNBAEEES MSC DIREIRH AL 40 X5 /2E K K7 /RNA/MIRNA [6]. MSC HA G i is
P, R TG R R A AN 55 05 S A 5, R R I A AR R G B, IR (e AR A B S e T BE )
TERLT].

2.2. ShibE

AN BFR A NIE N BEH(ILVY), #EEAERAFMNERN, BARE T )y 30~150 nm, H BT 4028584 730k,
MAAET IR PRI RS MEVR . SORUEWR. WPRR(CSF). BEFL. VG FK. Wl THI. W
MRV B BR8] AMMARE S Z R, WHEEER. B . DNA. mRNA Al miRNA[9], fEiX#&s)
T, miRNA FIFAERFRIA A E R 5 o, B 2 AEEMbR S . 4WEara
J7T LRSE. HFAERM, SN S5 Z MR, Gl BV KRB IEE . M4 R, iR
LA G2 WA, T ELAE BRI s BROIRZS it A5 L EERI[10]. R AMERFFER I, kB B 8T A (A
T 5 o240 ) A A 5 5 A PR ZH S S AR AL SR Bk /N BRUVUREE if 7 A i FH 8 5 [11]; HUCMSC-EXO
CUH IR B ZE AR S AR A RT3 000 W B 0 AR YT AR A o AR — R 254, did A RS 5
NG AR TR R S B, HUCMSC-EXO Y597 FEARILET(Cr)/KF. IfiLfR =& (BUN) [12]; hAD-MSC
I A sE L Sox9 I /NE b R A0 B PR B0 R E AKI-CKD #%748[13].

3. 18 B AR s Y & AR LG

PP B JIET (CKD) A — P A BRI A JL P AR 1] 3, S0 N A 33 ™ o ol 9 o5 DL, R 2R 5
BAE L% . CKD MU — AN —PBRIRAS, i — N A i B A B R, B IO e 9 B2 4
Mt RRER N £F4Efb KA CKD MR ER K, (HTE CKD IR RIS, BT 4eibie s Stk
o BAERFRINN, BAHEUANOE— SN DR, e — S dfE[14], A OB TERRS:
PR SRE T 5 N, WUSCEF 440 S A0 I KA ST B 4H L /1 FE B (ECMY), [ B B B S B A i (1
BLOBANER. B RISUG . BHEMER, FEOEF B HLUR T REIRIR A U, BT
WD RedATVE . ANritEge sk Hor ECM i FEUTR . WUSCAT 4EA RIS A (a-SMA) LA B AR 41 44k TGF-py
R Co A F 2 i AR PR BEAFAIE [15] o AR AR SR PTARTE B AR M A 245 ), BRI 38 B 454 . DhRe A ifL
i, XHERE AL, MENRNRASSE E5E. A2 R T (TGF-1. WNT. CTGF)FEUH
- (#5005 « BEPRIPE L) o) DURE B — i R, Al AR WA AN IE RS 52 A0 SOREAS 5 S S R, A [A] Jid
FYEL[16]. KERFFER, TGF-1 £ B ML 4 ) = W R 7, TGF-AL 1 Z i 4l 41+ (1 2 E
RLAHOC EWR AN B or b, JE IS S5HEE 2 ARG E, AIEGE STAT3. EGFR 22 INK/Notch2 46 £ 2 {5 5 i@, it
T A i A 5T (ECM) A i S5 2 1 48 1 20 R e W AR R [17]0 T3, SRMLIEHAL 2 s A8 B LT AL ) R A
VR A LB E o RIS P8 E A LS DNA P HIIRTHE R, 85 al 3 A& ML i 42 36 R R A
R A, F B G YLt i 4. DNA H 5L 4R (1 4 Wtk 25 21k LA HESR S RNA 1 RE/ER .
XEAEMRRENS FIRIE A R LT 4ELL A (U MCP-1. C3 FIl TGF-pL) K%, MK AAE SN . etk bR -
(] LA (EMT), S IR 30 5 27 24k (1 EFE 18]

4. MSCs B MSCs-EXO #3897 CKD hpy{EH¥LE]
4.1. MSCs BI{ER 41

) 78 i T 40 i (MSCs)7EIR YT CKD Hh EEIH N B4 2@ MIE LI AR, e R Y
HIRFHTRE ST 2 10008 e DR SRR IR ZH 23 P AR AN G i TR e, ZE IS B JUE (CKD) a7 R R B
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W] (147 . FH T 55 MSCs 7E 1145 1B T 9 0 Js 7 HH J I S ey 1Y) S 2 11 6 g, LT Ja o 01 B SR 4 i (DC)
() G ROk R K BEE T . WEFR W], MSCs Refs .3 PR B IE 4141+ CD103 + DCs (—Fl LA s bR
2 [ JI1 DC IR ERIEKF[19]. MSCs 1] LLdEE 733 PGE2 1 TSG-6 & B MEZH i+ cAMP/PKA
g, fEHE Argl A1 IL-10 ik, #0#] INOS Al TNF-a [20]. Bt4h, MSCs #5520 WA RN & K AE DT 4EAL
YER M EZN R, @l o030 2 FiAEYDS M P (A K R 1 PR IR 748 VA 45 B IO 88, Sk 47 41k
HEFE[21]. Hrf, HGF (P44 KR F) & MSCs 3l [ S FLeF AL IR 7, nl 30 /NE - R 4 i
FRAFAEA AL (EMT), 98D I TR, IRt M A i, oSoste B I L o B8R [22] . B5 Ak A K IR F-B (TGF-
BYVRTE: TGF-B &L 4k A% L IREN A F, MSCs it 73 WPt 4 4 AL R (40 BMP-7. Smad7) 5| TGF-
BB SR, FHWHAE A4 ER[23]. HARE T i s W A K EF(VEGF). BeF 44 A K H 1
(FGR)%, wmlfit MM AME NFEE, RN HA S BN 4E .

4.2. MSCs-EXO £ B A4 L4 P aIER LS

MSC T8 (1) 40 B 4 M e 8 (2 08 155 PA) Bz 240 A 38 5 40 ) 4 R 2 . BMISC-Exxos %é%) CDC6. CDK8.
CCNBImMRNA, [[ 8 8 /N8 b R 40 M J5 B3 30 695 72 [24]; BMSC-EVs X Ht 8 T° mRNA
IGFIRMRNA, 7£ & &b 5 44 P ¥ 5 25 52 T+ 5 40 Mo A7 0% 22 JF 0 o 14 58 [25] . hWIMSC-Exos 8 it 4111 il
NOX/ROS-Nrf2/ARE i #% 4k 151157[26]: hUCMSC-EVs #548 £ R A% [1] Mn-SOD, B335 14 H H1 %4271
ADMSC-Exos FAMRIFAT-ERA MARMALEA BUN, FH[FEH0% Smad3. TGF-p K2 & KF, HEBHL%
TIAEE[28] . 4R AN BT DU i i I 3 i A A A I R SR ARG B AIE . 910, GDNF & 3RiA 1)
ADMSC-Exos #i&i SIRTL 155, IXsh'E/NE BN FAE ST, B LfulEMEi[29]; MSC-
EXos ¥ /£ 4B H T2 K 70%, $2FF CD317/Ki-67+ P TR, PR I A sl K 73Rk, BHWTSR M - 274k
b S EFR[30]. MSC-EXos Nl #ik TNF-a. 1L-6, i IL-10; B3 ETE M2 BV, A2
AR RIS T, BERUE A G, YRR 12%, GFR i 52 7+[31]. MSC-Exos i#id CK1s/s-
TRCP #i#ifi] YAP, P ROS-p38MAPK/ERK-RhoA/ROCK Zilk, @4 4tk #ERE[32];  [RII ai/b i
YHMIEE S CX3CLL ik, ) bRz -8 iR AL(EMT) K B4R Faign, FELLIE B340 [ 2K 8 CKD 28
[33]. A4k, CEWFARY MSC-exos #4112 R miRNAs &5 B F RS VEH . miR-24 i L& 40,
Jnad R i 5 4252 [34]; miR-34c¢-5p 38 CD81-EGFR & &4, 1% B 18] i £F 4E4k[35]; miRNA-215-5p 4[]
] ZEB2, M3 DN [36]; miR-451a #idyiiEk P15, P19 il a-SMA. LM E-cadherin, %% EMT Ji&
# DN [37].

5. MSCs & MSCs-EXO £ CKD iR
5.1. MSCs #E;8¥7 CKD Yt R

MSCs 7E & & AR R TS RN E /NS B R RIEEE A SE 2 F S T4, v EE:S 548
&5 [38]. Morigi ZE T FE—ESL, EBEMIE MSCs [mI4 )5 fE i 5 0 B Ihfe, RIRdrE/ NVERA S
IHREMK S B 0 AHELZ R, ST~ E A BRMIE E 208, R ER MSCs 78 B JIE A i)
MRFRIA[39]. FHAHEIR & CKD MR Z R, HAZRIEMILE, EHGR 5 BB, MSCs mJLL
PN B IELH 2R ) S B A S HE S R . MSCs 383 PISK/AKT {5 5B B 3E 1 E S p 4HMu I bE, @it i
B2 1L-1 F1 TNF-a O S20 SHe 24038 i 5% 0 A K [40] . UC-MSCs i 1 LBt MAPK/ERK {5 Sl A S 155 7>
TAVE F R LAY PN 7 20 P G 52 e R AT AR [41] . KA FE R B, MSCs 15N B TR AF AL R A o, 8
I HAGUAFAEAIE R 55 - WAL, 75 EMT W R R ERTER, E5%/NE EMT, 55444k
[42]. flhn, Tang & A& BMMSCs 677 i it BH W IRPERS 75 5 1) CKD H Akt/GSK3p/Snail 15 5 i ok
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TR B 18] 5 4T A [43) . 55— TR FEAESE, AP 41 B 2 SR YR A0 228 F: K 15 1Y) ADMSCs i i #1
] CKD120 [¥] PISK/AKt il & 4H] EMT RS £ 44k [44] .

5.2. MSCs-EXO #E;ATT CKD IR

AU AATERE R B3 A 21 AR A0 S48 1R W IES i R AR R S i R R IR R . TR ER
BMSC-Exo FIHTAF 44 80N 5 H R U B I 4 21 2 AR A 4R AL BE DR IR 2k 55 ) A G [45] . Horr, Exo-miR-
let-7a 7E BMSCs X 8% R 5 9 (DN) (R R AL HR R 48 B EE/E FI[46], 1% miRNA @i [z e 7 Ak
fig 22 (USP22), 5171 TGF-B [Kixk, #EmisZm DN FimEE g E[47]. [EAFERENE, TGF-p AMUZ&
B A AL DS RAE R 7, B REAE B /N ERBE AL AR i 3 4E MR T2[48]. 76 DN B AL, DN KRS

YL T =B (HG) 6 A T 5532 1 2 A M A R4, 39— O 52 21 miR-let-7a {1334 R 4 &2 USP22 (1
i Rk [49]. BEAh, BMSC-Exo SR miR-125b A]i@id # 7] TRAF6/AKT {55, & INH|EHEES
MINIRE b R A T, 3G sR I AWy E[50]. 55— TR A SEEGHIER, BMSC-Exo H11f) miR-let-7c A&
B SRS 2 2400 SNV R, B TGF-A1 15 5, FMERIal MVl BRIE K a-
I WUILE)E 1 (- SMA)TE N 4L /3 )57 (ECM) 73 TR IA[51]) . 25 LTk, BMSCs SRUR ¥ 7 A 4 AT i
i i$i% miR-125b. miR-let-7a 1 miR-let-7¢ 2 L& 314 miRNA, A &% B /NE LR ai 8%, i
il 1B JoR 4T AL AR

MSCs Shub A 2 4 FERLEIT FIFE R, BONE AR 4EAIR T T AE R TT ] o AR A ARG S i )5
PE AR VEAN TR AR = . H AT TE R B, SR R N 5 R RS At g T U 40347 1 P 4 o S 1
VA S AR, T 8] 76 52 40 i (MSCs) K 5 1) 7 A4 (MSC-Exo) fE 18 R ik FE rh Py i 6 S Mt #5100
JFE P9 S ) 200 i S R 3o 6 TR R 52 IR T 40T, A MSC-Exo #2438 T RSB “3hhbfs” o it 51475 1 B /N
& LRI E RIS VCAM-1 fl ICAM-1, ‘E114:5 MSC-Exo FKIH - AHN %54 2 (1 VLA-4 Fil LFA-1)
ity A FINMRIERE T AL E S . S BRI T R I IPT 4 SR8 VCAML, TEEHE 71X — i, 2
i, HETHTE 23T 2R, I R A AT 75 A e S i A KR v A ) 2% $Eﬁi$%§&$&&ﬁﬂﬁéﬁ%rﬂ
. RRATRE TR SCE AN (it A2 mIRNA B8 ), DI SR BTer e ), e &3
I ARAIRTT SR .
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