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Abstract

In the aftermath of a rotator cuff injury, the initial tissues comprising the tendon-bone interface
undergo destruction, giving rise to the formation of substantial fibrous scar tissue. The tendon-bone
interface is characterized by a lack of inherent composition, structure, and mechanics. These
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characteristics are typically associated with processes of migration and gradual change. Currently,
the three-dimensional repair approach involving seed cells, scaffolds, and bioactive molecules rep-
resents the evolving direction of tissue engineering technology. The field of tissue engineering tech-
nology is undergoing continuous development, with a focus on three-dimensional repair methodol-
ogies that utilize seed cells, scaffolds, and bioactive molecules. Therefore, it is imperative to com-
prehend the structural composition of the tendon-bone interface and the mechanism of its repair
process. Moreover, there is an active need to search for tissue engineering techniques to promote
tendon-bone healing to improve the efficacy of rotator cuff injuries. Based on current understand-
ing of tendon-bone healing, this paper aims to provide a systematic review and summary of recent
research progress in tissue engineering techniques for promoting rotator cuff tendon-bone healing.
The objective is to enhance clinical practitioners’ understanding of the pathological mechanisms
underlying rotator cuff injuries, thereby offering novel therapeutic strategies and insights for the
clinical diagnosis and treatment of such injuries.
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AT5 % 1) 76 JoR T 2H M [8] . 8] 78 i T4l (Mesenchymal Stem Cell, MSC)ZREUCIIE ) 72, AT M B6 (15 B 18] 76 5 T
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BUEIRESH IR, BRI SO AR TR D RE[45] o DR R — -1 5 ol Bl = 24l 5 1) 2 s i)
T N G BRI 51 R SORE SRR R Al A% 1 R L [46] . TSN IR BRI AE i A i AR
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