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Abstract

Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Its
pathogenesis is highly complex, involving multiple pathological processes such as neuronal cell
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death, inflammatory responses, oxidative stress, and mitochondrial dysfunction. In recent years,
with advances in the study of cell death, increasing attention has been given to the critical role of
regulated cell death (RCD) in TBI. RCD refers to a group of programmed cell death modalities con-
trolled by specific signaling pathways and genetic regulation, including apoptosis, autophagy, py-
roptosis, necroptosis, ferroptosis, and cuproptosis. These processes contribute to the clearance
of damaged neural cells but, when excessively activated, can also exacerbate tissue inflammation
and neurological dysfunction. This review summarizes the latest research progress on the molec-
ular mechanisms, interactions, and potential therapeutic strategies of various RCD types in the oc-
currence and development of TBI, providing new theoretical insights for intervention and neuro-
protection in TBI.
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1. 5|

G5 14 i 45 4% (traumatic brain injury, TBI)Z 4 R4 i W 2 —, AEREFA 5000 /5 A LA
Rz, 2 EH SRR E AR SR E BRI [1] [2]. #ESEi, EEGEH TBIE KI5t
TNECS A AL ANEUR) 2.2%0L |, 238 57%I1) 8 2 5% TBI 32473 5 4 Ja SR R v o 5 ml o B
PORAS, BTGRP ERFE3]. TBI KR R WA AR5 04k & P A s v VR MU
15 BRI A I IR0 R R gt R s, kR IR R B R RN A T
FEMZ RIS, ST S uEUR R R R T RE IR0 [4] .

RGBT, TBI G LT R N T 508, JLE Rt T A R e
(Nomenclature Committee on Cell Death, NCCD)#& 1, 4HREAET: 1] 7324 =AM 4 B JE T (Accidental Cell
Death, ACD)5 %5 14 40 i1 56 T~ (Regulated Cell Death, RCD)# kK 25[5]. ACD B4R AR Z M . 12tk
HUB P 25 ™ S 45 5 i A B B PR 6T . 5 ACD R[A], RCD WKH T4 5E B FHLE], & —Fil{E S5 ™
LR RN DR P 42 il (1) 2 Zh A0 AE T T X, I 2 sl N WU i #2[5] [6]. 7E TBI 1, RCD f7{EZFh
TEa, FRAEMZ TG B TR 200 BRI /N T 40 i 5N [ 4 R S 28 o R 4 2 A A FH o IR NHIF ST RCD 18
TBI 5 7L, BT TBI s & IReti v e R 2, S TBI Ja R M #h & ARy S L i
B

2. RCD Wit 2543

RCD /245 H DA g 138 i R 8 5 Sl B8 A 1) B A At Tl i, XRRFE P E4E e sET2[7]. RCD
I NS 5 SRS ML TR T, DUERRZ s 8 4, Am4ERrH 23835 08]. HElc
K ZH RCD #2, 5T (apoptosis). H M (autophagy). £ T-(pyroptosis). JRFLH:IH T2 (necroptosis)
AT (ferroptosis) FI4H AL T (cuproptosis) & [9] [10]. KEIUFIEFRI, ZFh32 5 Tk s r4nust s
TE TBI KA JE 0T o X LA Z [AIBEAH B ST, XOATiEAT A8 X5 . AR RCD T AL (8] #0175 8] _F3))
BZE, LEEEMALG G5B E 0.
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3. 7[E RCD #& TBI 1 891ER
3.1. A5 1BI

PAT R B R ORI 2 070 RCD B, RRE NN 9E4E . A% E 46 . DNA Wi R T /MAeR)
e MRARAE T HRITHIAE, FTIA] 55 NN E (R &R F AR (FE T 2 k)& 2 [11]. 7E TBI J5,
LERIARIEHLAL N FF. IR C (Cyt CYRL, (R T-XN T Bax i, MHAT-EA Bel-2 R, Bigk
bt K & if§-9 (Caspase-9) 1 bt K & -3 (Caspase-3), MIfi 5l K ML LI TI[12]. A K TBI R AT 7T
FH, N SR & il (Caspase) 301 771 T 55 35 2 TBI JS AR ToR808E, It/ et 20 400 80 2 B0 0 4
PR INRE[13]. 734b, dF caspase MM IILH ML 122 SRR RA SR B, AR TS S E T (AIF). 2Rk
PRI S 2 R ARG DR 1/ B B0 IAP 2 (1 456 8 11 (Smac/DIABLO). %R N VI G (EndoG)fl%
K H-1 (PARP-1) S BRI AAZ N, BETTOE RS 5001, 51 R G o R B 4 i (i 3 [12] « & B
MU T B TG bR ™ B A, (HER TS B E R RMERBIN LS. Fik, #
PERETAS S KT 2 TBLIRIT I E B 5 1A .

3.2. B5S TBI

W A 0 L o 9 A A % A 52 B 40 P2 5 B R DR MR, HOGERE oy TR B RAE SR A
Beclin-1 (Beclin-1). & M &R (1 1 #2%E 3(LC3). 75 A% 2 #L & (1 (mTOR) A1 Unc-51 ¥ H Wiiig 1 (ULKL)
[14]. 1E TBI J&, #£&oH p) EEAHCE A WMEMHCED 1 35 3-11 B4(LC3-11). Beclin-1 iRi# A&,
P27 HRIBOE[15] . Pei S [16]/ — AL R B, WA TR IR H WA ST 5 (Atgb)J [l i) /)y
B R EINE TBI GHME IR G S0 5k, XIURERE A BA Ry 1EM. 4, 8
I i (autophagic flux) & Kl VA B /R T BESZ 1AM 32 FH, T2 p62/SQSTM 5 HWEFRA 2L, Wi In sl # 2 a4
[17]. BEAL, ZRkifa E g (mitophagy) fE T PR Z LR Rk . HEFrAn i EARS i R EE/EH .. Bel-2/ji%
Jpi# E1B 19 kDa 2548 1 3 (BNIP3). BNIP3 F£2& [1(BNIP3L) 32 R/ T I LR kit H EAE TBI F IS
T, AR AR 2R R T BB AT . (R B IR R R F R R S B R AR, R CXUII8I
L7 [18]. I WEIE 5L SORE B VARG, S S2 A AR LR F 22 2R 75 2 % B 13 1 (RIPKL) T35 Atg5
5 LC3-1l ik, (it BWEIHHHIZE T «B (NF-xB) /- SIS0, TSGR H R Hih[19]. Fit, BWRAE
TBI Hafe BRI 58 1E A, 85 RE T B WL 0 SO AE . TR R S SRk B R IR
HESENE, ATRERCA TBI 1EYT IS E 7 ]

33. &5 1BI

FET /R — PP RH 2 M Caspase (Caspase-1/4/5/11) i (AR 46 4R MIAE T 3R, FARAE A 40 i FEE LI 72
B AN K K A A -1 (IL-158) 4T 22-18 (IL-18) % A JiE K PR [20]. KEMF I Ew, WS
FRFEE (1) A T2 22 JEOR R AR S, AR g I B B e R AL s 22 ZH 4301497, 2 TBI 4k R 1454 1) B 22 3K B
K Z&. 7£ TBI 1, NLR S pyrin Z5H48 & 5 9 3 (NLRP3) & I /IMAIE AL R AR T 1SS S0 . AU 15 %
TEPEE(ROS) R A AT S NLRP3 2 &%), ifi Caspase-1 Z4fiffE L& D (GSDMD), &R FL IR A AE
AJFi[21]. 7ERE TBI B4, NLRP3. GSDMD J Caspase-1 7E TBI ja ik 3% Fifl, JE5MATRENR
FREFEAROC[22]. @ HIH] NLRP3 B R {2 & sk K11 CCAAT/HY 74548 6 (CEBPD) ]k
GSDMD Z#5 J&5E 7Rk, SR 4 SR 5 T4 M 23], £ETCE TBI hI/E - BA XU . & B
WA B T YEE R A A . BRI EE, AR TS (AT ek A
T U AT ORI, SRALTIUS o IRIE, TS 5 IS FE P P RE AT 25 4 2 AR R T R A
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3.4. IRFEMATS TBI

BT T2 — MR RIPKL, S2A8AH BAE A 22 20 B2 75 A BR B8 1R 3 (RIPK) SR A ik R I T
SR AA(MLKL) G S iE Bk R P MR SBT3, 4 Caspase-8 #¢4ifill}, RIPK1 5 RIPK3 JERE &1k
(necrosome) i MLKL, X4t MLKL FEERMAEITEEE SHIRBHIIEBRPIP) K BRI R, FERKR AL
T, SR E AR, S RIRFEMEF T:[24]. 1AL, RIPKL &5 JEAS S @M AR, (2t id
WIEH F-a (TNF-a) 5 AL/ F-6 (IL-6)B78, My K faaE [25]. /MR TBI #i84H, RIPK3
RIPK1 & H A HJEY) MLKL FRE /K22 B, SERhEAstT, 48 HAZEMEE T3 7)-1 (Nec-1)
AL /N BRI K . R AR T e S B T RE[26] . Liu SE[27]00—Wish i sEse I, AT —
M) TBI/NER, RIPK3 FE R b (1) /N BRER I P8 00 5 2R/ b LA R AT N INRE s . Rltk, SROEME
AT RAT 90 5 IR B0 2 TR FOAT 22, RS Af TR 45 29 TBI Jo i BE (AN AR VA R -5 28 0 S B o

35. %KIEL5 TBI

BRIET % — ol RO i o A i B AR T IR BN R A VR T e 4R AE T 2, R BRE AR
LR /N L5 FE 38 B k2>, FEAZ O oy T AL B AR 23 I H IR (GSH) #6385 23 Jbt H kI 42 A0 Y 4 (GPX4)
TWHE T RGEIER BRI IR R 17 F4318 R 58 (System X)Lt 3245 LA K 4T i JiEE 22 A i S 7 R 110 3t 4
1, FER UL E A BRI (28], 7E TBI KAESG, HUMCHES B - 5 e U8 5 3502k oMt gk
Fazs oy, KEWERAEMALNIIE, INE Fenton [N AN B RN JOE RN . 2 kiiA it 5 hg
ARG — DA AR UL E A A i, A G 5 N BRIET @R [29] . SRS RoR, TBI G
PO, ROS KF KB i A TR RIS BT, T GPX4 SR ARIE R, A FHA0T-#0HI7)-1
(Ferrostatin-1) Bk FHER S &« W0 Nrf2- VAL RS 1 VA D H I S0 i 4 15 5 il # (Nrf2-HO-1/GPX4)
2677 I TN 2 T AR I IR A IF G AT N A T RE[29] o [RIBL, BRFET- AR TBI 4k R Va0 i)
ZOMLE 2 —, SERZRBETNT L TBI 4k R M i e Aosr s .

3.6. $AFET-5 TBI

A AT SR R I — o B R PR AR T 7 5, LA O R A B S 2Rk R R TG A
(TCA) FEBH L EE AL G, B FEARELRREEA LR, A FBERAOFENBREIET:, HX
BN AR RELEE 1(FDXL). REEER & il (LIAS) J — S ¥ IR £ I ZE B (DLAT) [10]. HE
IR, TBI G S 5 Tkt s, AARAS R 1E TBI G HRFE KT [RI[30]. teabh, e+ rlid
R ZRAR WA AL RS, SRR e R = AR S 4 M AR AF[31]. TBI 8 T AR AL i Ak TS
BB, B SRR ERSEELE TR TBI 4hR Ml Z R &, 31F FDX1 2 DLAT 7E TBI fixZi 41
W R, VPR E TR BOR AR 2 A S A B s AR R, Ko TBI IR Ry T HR A T £
WA

4. RCD 7£ TBI i3z i@

TBI J5# K12 RCD 77 RIFHEAI R A, il ik 2 2 (5 S50 i AT e R 4 i 25 453475 S5 T 1k
BRI . N, T2 A K R S AT RIREEE R T SRR T S A T = kAR, Hoar
UL H caspase-8 JiE 75 RIPKL/RIPK3-MLKL & 4 1% caspase 2 [A] () 5 4+ 2 [32] . I F M@ i — 7 1
RERE M NLRP3 S5 R MEER 1, 930S R 1P R ARG AL, EBMRIETIER: 5—Jrh, & awd
FE B IR AR 1 W i, DU RSO 22 (T Sk, (4 M B 5 N RS T B . kA, TBI G 4Rk
A U A A 2 i — DR RO T, RIS SORTHES JE T RIS BRI T R A, T BORE ELROR 1 1E R
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Tt AR R M54 AN T D 2 [33]

AR S BT FORAE SRR IR 26 (10 N AT AE 22 5 PR e R Ry . R NESS, 5 R A2k
R T 52T [34] . /DR AR X e s 4H L, TBI J5 H 9 NLRP3-Caspase-1-GSDMD
OGS, BEET RO E R YER T, (2 FE4IH A RCD H H6[35] . AR B 4 AR R A AT
DL % NLRP3-Caspase-1-GSDMD 4ild shAM A T2[36]. A4k, BEIERRAIMRAE TBI J& ] HEERAR
R A R 5 R B SE A RIARAE , AT R NERBE T AR [34] . BRIL, X TBI [ £ (R4 SR u
J%. 5 FE RCD B 25 5 20 M 2R 20 ks S, SR FH 22 L I T SR s DS A R0k 400 ) 4 P 5473

5. TBI [5%8[5) RCD RI;&¥T

TBI J5£#h RCD IR ILHES 54k kMR E, #XRE RCD 8 # T 7 5k B &8 s TBI IR 77
FUHHE L, BEAEYE RCD 250 FAE TBI VYT AW T . TR T 510, H A 32 B ) R &
BRI S5 I S R o8 RLAR D RERIF D #h22 e %, ARG It L H5 (8 ) i Bk 4% caspase #0171 (40 z-
VAD-fmk. Q-VD-OPh). -1 Bcl-2 Eidlifi| p53 i@k <E, shWit 5t 3y Bon il i 4 21 % 547 A% 45 R [37].
E R R O, BRI mTOR #7115 S0 B F WeE B TS BRsZ2 g pds, imfe A ki
FEE B 0 I T 75 R FH S A 770 LA L AR DG 4E MU FE T2 [38] A1 RTAE TS, NLRP3 #0155 MCC950
Al Caspase-1 #I i 7] VX-765 U 1E &) 4 18 Y vp 35 9F H Ht & 2 A [39] « I8 FE M I T2 96 97 R 4B
RIPK1/RIPK3/MLKL %, H: RIPK1 41417 Necrostatin-1 7£ TBI #74 b ] & 2 /b 4k & MR FE AT 40 I
RE[40]. EFXPERIET T H RTHCN R, BAEREEA ) T A HI 77 (ferrostatin-1. liproxstatin-1)
DA% 358 GPX4 B R 4t Xo DhRE A5 Sm , 1X Le 48 fita 25 e A R s T E b F R P& T [41] AR Z R,
FAET A HE S A st T2, HAE TBI e iR P IE SR AR, H AT UE 2 T Hfa s
FE(VUBHRR . 5 B E bR ARSI VPR R [42] . SRSKE, HEH RCD MIGYT 230
HZ . WA SR T IS, HRR IR B ICHETE T B S AT TR 5 . $ 0 ] i3 26 2
#, It DA RCD (A58 SCRIEMLE], DU S0 5T In) I R AL 1 AT AT

6. Lit5RE

TBI J5 AR 4 A AE T2 4k R M Il 3 95 R AZ OO R B3R 1T . RCD /B N — IR AN st Tk, #oR
TR R A S E R . ZRIET RCET. B, BT RIEMEE T BRAE T SR T %) BE AN
HANT, OB EIRAE T MRS S, LRGeS o MR R s . AR, BRI T
A TP T I G I PR B SRR S TR T, X SR AR AL T AT AN E] RCD 77 UFE TBI AR BAIA,
NZ IS RS A R S SR AL T BRI 3 A . SR10 H ATE 9% RCD 18 TBI &35 Il RIE 3 45+
DA, A2 B T Eh IR AL B R A S, K Sk BSOS Y S I A2 A v sk RCD
REAE () LSRR X B = o BB B RCD fE I PRI B BIAE FIESE B8 245 B ARV (EALHI E T, R SERIBhAs
WG I B S AEAS [ AR (0 BT R ATY e i3k — 210 e B

ARk TBI BN p B EECU R 7 ) B4, BAANIA RCD ZRALE TBI AR B (Bt ok, 12
PE)RE I 5, MRS HET- 1. LUK, Insixt RCD Z A ELAE FH S R M 45 dn5a 4+ PE N 1% RNA (ceRNA)
W2, IS TR . TR, AL RCD MR K825 R 45, 1250t il 23 se ik . JF
R 2F Bk I BE e () /N o B R B A, I R A ZE AU T RIS TSR, SRBN 2
RCD MIZEA . f)a, MMRERITT A SIRKEANES S, Rt E 2 IERRE KRR RCD 124t
AT R B2, WNfENT RCD £E TBI H K41 HLH g £ Ve i g, A 2 ph 2 O30 F T REAK
SIRALRIEA T .
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