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Abstract

Nuclear receptor interacting protein 1 (NRIP1), also known as receptor interacting protein of 140

CHIERE

CEG|: EREE, RHUH, XU, EERAE, TKE. NRIPL R R AT IR BERED]. IRRAMEALE ¥, 2026, 5(1):
398-408. DOI: 10.12677/jcpm.2026.51056


https://www.hanspub.org/journal/jcpm
https://doi.org/10.12677/jcpm.2026.51056
https://doi.org/10.12677/jcpm.2026.51056
https://www.hanspub.org/

mlbE 45

kDa (RIP140), is a transcriptional co-regulator involved in the regulation of various physiological
processes, and its dysfunction may lead to disease. Unlike other co-regulators that play a major role
in co-activation or co-inhibition, NRIP1 has a unique dual function in gene regulation: it can act as
both a co-activator and a co-inhibitor. In recent years, with the deepening of research, scientists have
gradually revealed the important regulatory role of NRIP1 in the development of tumors. This arti-
cle focuses on the molecular regulation mechanism of NRIP1 in breast cancer, oral squamous cell
carcinoma, intestinal tumors, hematological tumors and other malignant tumors.
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1. 51§
PR — B RN B L A YV, R R, M A TR R T U7 i, A BRI I 1 B A
] B —[1]. 2020 4 [E L3 R R 1] 454.64 T3, BETG 299.26 Jifl, 4355 AR 25.1%

F130.2% [2]. HAET, MRET EEAEFER. 7. BUT. TR TT USRI IT S k. B2k
AHEAF FHEE 1 1 (Nuclear receptor interacting protein 1, NRIP1) & — s 3L K7, LAE NRIPL BB 5T
FEEFEARRE . GBEMRW. RIESZRAEIRE T, AR ST EER 7B Rz
Mo IR TERIL, NRIPL 752 PR (Wi A2 Kk e id #2 vho LSRR . ASCBERSiLRR
NRIPL £ 2 Ful g o (1) 2y R ML, I3 SR A IS AR Y hs B R TR 6 T 55 (0 S T
FUIE 5 AR PR AL AT 5

2. NRIP1 &#151hgE

NRIPL {7 F 21 SR KR 1 X 147 2 Wi7(21911.2), 4 NMMEFR 3 NN & TR RYIEAN
KL A R R B, TR e MERL 23248 o (estrogen receptor a, ER o) [3] (1) &5 A ek i AH LA &
o NRIPL 52 K 2 B0t S A H At JURN G s DR B S5 19 (R [4],  BRERRAE N 3LI0E R+ SCREAE A 3L 4]
DAl 7 R A AR o X Fh R ) 458 8 006 T oo 1 S5 i B RR IR 1, EEERINAE C i &8 MR IRt Th e B 7«
9 A LXXLL 3503 H S5 R ZHAZZ AR Z A EAER, 1 1A LYYML 57 n] DURE etk 25 G I s R
24K (retinoic acid receptor, RAR) AL 3 2 X 5244 (retinoid x receptor, RXR), H:rh 53% 2 AR F% 3 K F # 3t
VR R AH ELAE 2 B LXXLL ZE/775 (& 1)[5]. VR4 5, NRIPL idid N 3 4 4~ H EH
il £ #4115 (repression domain, RD)4A 5540 & [ it Z. Bkl (histone deacetylases, HDACs)F1 C 4t 4 25 1 (C-
terminal binding protein, CtBP) &l =2 54[6] [7]. VENILWOS I, JRAE = NAERIEIR, NRIP1 7]
T RD1 5 CBP (CAMP [ B yG 454 8 1 (CREB)4: & 25 [1)/p300(ELA 44 45 1 p300)AH TLAF Fi Sk et
NF-xB B¢ CREB /T 4% 58] [9]. iXFhIhREMIA M M T AR . )3 3745 e 1t DL & 5 H A SL 1
TR FHSE S LS S [10]. NRIPL /R AL 285 S i (1) oGk 7 0%, B RBARKE. £F 7. Bt
AU RAE SO TR S 2 A A E B R R EEAE 9], Kok REBUMEYEA T . AR I KR
FA[11]. NRIPL S5l gk ik B E g & A ke il R P i s SGB AP B, BRI, IR NI T NRIPL 49 3 H08r
IR VT R R AR R
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Figure 1. The structure pattern of NRIP1 and its regulation process
[ 1. NRIP1 E#iE X E R ZHFIENEIE

3. NRIP1 5hig

iR AU AL 2 N AR R R85 S W 0 B A, 0 RAE B R e e, Btk
R B AR AR I, R E MR, 2 MEAET, NRIPL (ZhEEC R 20T, JeH R
FETE U TR R A DT T AR T (2 1) NRIPL £E 22 R R 2 L rp R I AN R i s i i, 72
i iR, NRIPL fOEIK 5 e 40 i O HE B RE 0 DIARSC . WFFERWT, NRIPL f s a8 5 i e /5 1
ARIUGARSS, HIHAEA A A 0 75 240 05 FECRR T 1 42 5 DDA 5 [12] - NRIPL (9 Sh REANM BR T3
PR AR A AR, SRV R BRI T . BETEREL, NRIPL 5 2 Fh G B QIR A (R 0A
YIS, AT REIE I Y S e 4 R IR I AN Th RERFE M R I BERE o 41, NRIPL FRIE 5 B
FAAACFAER, Him A K NRIPL 5 [ ) G Ze il oA e s DIAR G, 3X 09 NRIPL £ i S e ia 7T i)
TEE R SR A 7R AL A [13] o
3.1. NRIP1 #E5LRR#E o N E BIE(E A R R IR

TE 7L (breast cancer, BC)H, NRIPL [T RE S 00 H B35 BRI . ot 7O I, HAUR
MERCR A E2F {5 5 0B (GBI R 7, S T8 IFNy {5 5 R 2 o 20 OB I A, E R oA 5
AR G AR P s 7ROt LI RAT 2800 7 0 R(UnE SRS . HER2 ARESSE), ANFEALT
JEERRE. B, AR TSRS, TR RER AR B AL UG BF[22]. HATIR ARG ST
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Table 1. The regulatory mechanism of NRIP1 in some cancer types
Fe 1. FLfREA RIS NRIPL BT HLH

Biological function  Expression Upstream Targeted gene Downstream
Cancer type impacted NRIP1  status of NRIP1 regulator (or Key node) molecules Year (Refs)
impacted
BC PIM1TITAG?T oe - IFNy - 2025 [14]
oscc PTMTITAAT oe - NSD2 DGCRS 2023 [15]
Notch/HES1, 2024,
CRC P1AATCR?T ue - POLK - 202p 1611171
EVI1-RUNX1-
GATA/LOC101
AML PTCR? oe 927745/GH21J0 - - 2022 [18]
15439
LC PTAA? oe - - - 2024 [12]
NPC PTAA?T ue SUV39H2 - - 2019 [19]
miR-548-
ESCC M1t oe 3p/miR-576-5p - - 2018 [20]
HCC PIM1TITAAT ue - NF-xB IL-6 2017 [21]

¥E: BC, FLME; OSCC, ME@eR4nfiuis; CRC, ZHE; AML 28R CMH; LC, fifE; NPC, SWHE;
ESCC, B&E®RIRAIALE; HCC, A&, oe, IIRIE; de, 1&FKIL; P, MR4IMIMIGHEAEST; M, R4 EIER fE
J1s 1, BORAINMRERE S R, BRAMRPIETIRE /) CR, T IHZsM:, AG, MEAM: IFNy, T X y; NSD2,
M2k g6 SET 4535 A 2; DGCRS, UGEIARE AYIWHE; SUV3IOH2, A ¥ 3~9 [FFEY 2; NF-«B,
BT «B; IL-6, HYHMEA%-6.

FUIE T EAFE TR WITBURERIRYT, (HRAFTEmT 251 LS 2B Ve 55 1) [ 23] 22 BRI 72 O Y)
A7~ T NRIPL £ BC @ HLH] . Rosell M.ZE[24) A& B NRIPL 3 ek 3X 5 e 44 44 6 14 4 BELi& 4 (Lig-
and-dependent corepressor, LCoR)#lIill ERa ¥ I T HEMEE RS Sk, ) BC 4UiurIgE. 52 AHH
Bk, NRIPL i&v] Lhidid 5 E2F1 (E2 factor 1)45 & F-AMHIIL i, T E2F SEEER )58, MIfIfE BC
HORIEEVEFI[25] [26]. WRACREL, SiEss EwAZMLILL, TR B &S FLRMHR H NRIPL ()
Tk KA B, BB EE S ERMEMR Y, NRIPL 325 RIA T2 R4 i i
JRH, TP PR 0 AT R A A A N, R Hosid siRNA #1 NRIPL 7T 52 25 541
P I A A K [27]

NRIP1 7] LL5 BC H-FHEE y (interferon y, IFNy){E 545, MM R 4 i B0je 38 2= A= 5o m .
s £ En, SEFMRLS 48 [ 1 (guanylate binding protein, GBPL){E A IFNy ¥ S (A% M B H, 7
BC R EEAE 28] [29]. EIRIEFK, IFNy/STATL 15 54% S0 1% S MR 40 H T3+ 58 BC it K
FOHI[30], FLZ 0T LR iR i NARIIRAS[31], 4R1M, &t ml REAR 3 B0 A i 3 AR . F 90K B, NRIP1
1E A GBP1 #ik, 7£ BC 4 & E{K NRIP1, GBP1mRNA /K53 NI, 996K MR 5 SeifiiF e
Hodid ISRE %% GBP1. #&1M, NRIPL &5 F 454 ISRE B [FEpLH A FEAE A AN B ff . ThRgs:
Wit —DER, (K31 NRIPL I, IFNy X GBP1 (5 S/E 58, M NRIPL i RIA F5HT IFNy B4
FARENI[14] . BEAh, BT S EEE T, NRIPLARRIAR) BC B3 h, IFNy {5 5805 5 R AP UG A<
[14]. %iLE, NRIPL 7E IFNy JE#H HAXE MG FERUIRE T ISRE iR GBPL 25 JE [K 3Rk DL
BBE, RS RIS 2] IFNy (5 508K, M55 HAmDI6e. 5540 NRIPL 7£ BC fg & AU+ Rk ¥ 0k
YEF . W7 R NRIPL 385 B ¥ 8 & 4 4% iz 8 [ 3 (glucose transporter 3, GLUT3)#iA, it p53 /311
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fIk%0 %5 S 5 -7 (hypoxia inducible factor, HIF) G b AL, FEHASHEREAA, MO H0H] BC 41 A 0 HE B2 A A5 it
PEIFE[32] . X — AR ME 5 HST IFNy 5 S @B A2 L MR T NRIPL 78 /8 & & i 0 i
67, RITRERA NRIPL () BC 167 SEmg At 7 B B 0K

3.2. NRIPL i@ i3 = ALE (2 3h0R 3h O B 8% i3t R

LB 9t 40 B8 (head and neck squamous cell carcinoma, HNSCC) & Sk 30 s &% 5 WL R 1tk i, Herp
1 fis % IR 291 Ffu Je (oral squamous cell carcinoma, OSCC)E N F A, BA SEBR. |mE R EMIGIT
PRSI RAFAE[33] o (AR, T FEREVE N OSCC [ EAEYAAFIE, RN &3 TG (1
EPER R [34]. T X —IRARBUR, BRZR AT T 53092 W 0 T 1 A= b b, DA R 46 5 1 42 e e 4 o %
PEERE RS, TR S T A AR R 1) B ) 2 ]

HHE 4R T NRIPL 7 OSCC RAER R O AER . Hu Z[1518F 56 N SUIESE, AT IEH 1
Jis b K4 fe, OSCC 4fit & i NRIPL i) RiA Rk .3 il DIRETESCIGm 7T 1 NRIPL % 8 R A 1)
SO, AR, MUK NRIPL 2 H06] fof 40 g3 58 . ITR AR 2268 7). T4l iAR 2R, NRIPL K
KR BE T SCC-9 F CAL-27 A A T2 [15]. IRANLHITE SR R T NRIPL 3 i 2 st 4% 42 1 2% 12
#E OSCC KB /> Tk . HAKIMF, NRIPL BEfEH: G NSD2 13815, NSD2 i1 i 1b 41 5 A b
it H3K36me2 7£ DGCR8 Jii a1 XK w4, MLt DGCR8 k3L, A OSCC Kt /E
[15]. #%324k4E4 SET 45 #4219 2 (nuclear receptor binding SET domain protein 2, NSD2), F&—ffi#
SET &5 M43 1 £ 1 oM 20 e P 2 A I, 2 B A 2H 85 1 HB 7R 58 36 A i &0 & 1) — H £ 1k (H3K36me2),
A R T B g S [R] (1 5 SR 05 [35] . DG CRS i ik 3 88 53 4541V % (DG CR8 microprocessor complex subunit,
DGCR8)& —#f RNA & & H, i 5% 111 & Drosha #piH, 7EMA microRNA A9 K4
TR IEREEAE I [36] [37]. BEFL KL, DGCR8id 53 LAl pri-microRNA e, R LA 35 1Y 5i i e
S ff (K1 55 [38] [39]. ALz, NRIPL i #5E NSD2/H3K36me2/DGCRS 4Kz OSCC #ifg, Hm#Eik
A2 W B TS AR )

3.3. NRIP1 fEA B ERRS T E ST iETS 7

4& H i (colorectal cancer, CRC) & A BRIFIEAH FKFET-HISE = K FEEIRH, 7ERIEEFILT K EmiL 33%
[40]. FHATEIRIK EAECLUR L, ZHEHTIZH CE R l, Kk, JFRF G E S0 T CRC
FORHEE[41]. HETFARALITZIEIT CRC M 5%, (RS T B 1 03 22 57 DA R 4 i vT =2 1 it
Zitk, FARBERM AR S, XY HERINREE A M CRC IAIT 7 % [42].

BT AR, NRIPL {E24 Notch/HESL {5 518 B ¥ A i 44 R 7, 38 3 e (90 00 [ i 5 ALt 4 45
BRI CRC (IR FE[16]. Notch {5 5 I8 % 18 ok 4 R e A0 40 B A0 T 40 i O 3 AR AS,  RIRH Rt e
I NS A0 1 2, B335 T 2 Wbl 3 40, DITTTE I T8 8 RS P P16 v e A B 24 FH [43] - 4
Notch J@#7E CRC ' H A #Um# /1[44]. 1EA Notch @Bk ¥ 3= BN 4> T, HESL I8 ik 4% Frvi 4 A 1)
BEFEA MU FE, 7F CRC 8 i R I B ML YE I [45] [46]. BFFC A BT 2 A SEIGIESE, NRIPL
REZNATH#E Notch/HESL {55 il : fERMPIRAS T, RSN Notch B EMHL A EOLEMHIEA
(recombining binding protein suppressor of hairless, RBPJ)- 54l E 4945 &, fRFF HESL MR RIE KT
£ Notch #uE#IH], NRIPL A% sh & IEvEAL VI [FYEE E 1 (NICD)/RBP) E &G TE 4145 &
CtBP 4l [H 1, LERTF HESL Fik; M4 HESL ML AEWE)E, XAHEE NRIPL ERNHIE &
Y, SR E SR [16]. B2, NRIPLAEN “2p 5Pk, #E{% HESL IR IUNILHEE A 1, & HESL
I LM 7, RERAOR Notch il RiRE /7, Pk Hod FEBUESUE . BRitbz4h, NRIPL ik & 30
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ATLLIE A% POLK [N (1 3IA, 8 m s 4 fxt 40 175 5 DNA Hifi B R EE S, X —KINELfE CRC
B VR 26 1k O T BRML AR AL T BT A M [17]. (B JE 2, S54A0a R Ik, CRC A1
NRIP1 £iE %, 3 H, 7ERURYE CRC 1, NRIP1 mRNA HIEE A /KF 5 83 1 s AR 7 ) B A o,
Hplwf e N R TG AR EW[47] [48]. XL E BRI T/KF#E A T NRIPL 2k S5 HESL &
WHE 2t CRC RAEMIMLE, RN I RIG T H AL 7R g . filtn, #Em NRIP1-HESL AH HAF FH v]
RE A4 Notch 5 5 38 B R 377 A2 R LT PP V6T SR s T4 NRIPL-POLK 6 1) il v] B Ay i
CRC & VAT 25 M 32 (LB VR 7 # A

3.4 NRIP1 ZEMAEMME I B FOA SR BT

NRIPL 7Eif ML R Ge R AF EEAEH . HF7CEM, NRIPL 0] g2 4 F7id 1 T-41 i (hemopoietic stem cell,
HSC)#f EoRAS A0 IR 53 ML D Ae Y OCEE X 7, R AT B85 HSC i BV AL BT R 2 A AR 2 [49] [50]
IEAh, NRIPL ZEAN R e A b A B 3 2 7 78 NK Ziffd s Rk, TAE T 4 ik k-4
fIK[51]. XMERBHAIZR NRIPL AT g BA 40 M R AR Ve i D e ——1E NK 48ffarh, NRIP1 7] g
Z 5YE R IR e I AL RE 71, TAE T 4 i IR IA T B Bh T8k G 1) B f g% I B o

FEIME R GEEVEME 1, NRIPL RIS I 00 4 e At TR R AE, LR IE 7K 5 9503 TS % )
AHSE . EAS I Ik B2 4 M 5 1955 (chronic lymphocytic leukemia, CLL)HY, NRIP1 EI KL LRSS, H
EAMRRIE S ARG, EHAARREIIH AT 2. AN, NRIPL AR Wiz
&, Wnt I NF-xB &5 ¢85 Sd g CLL REE[52]. S22, 7EatE R YoRid i = i
(acute promyelocytic leukemia, APL)H" NRIP1 t £ HUILFRIL/KF[53] [54]. H4, NRIPLTEAMBER A
1fiLJ%5 (acute myeloid leukemia, AML)II & &K e i k¥ R BEVE - 48 Haferlach 45 [55] NI &, 7E%%
otk 3g EHER AML 3% 1, NRIPL J HATIT IR S RNA LOC101927745 £ HLE 3 Fil, H&#RiAK
VSR ZERBAEF R IRABFAIL, NRIPL{E AML A 5% I8 2 BI0E 2. — 7 s i
WIRRA)ESIEE, HE3TXE S RAR &AM A, RA BB ATRA)FT S NRIPL £ik; 7 —
J7TH, EVIL-RUNX1-GATA2 ¥ B &V E 45 A LOC101927745 X Ik ¥) GH21J015439 3551, K3
NRIPL =314, MR A s 1) & £ [18]. 4RTT, FE#EHT t(3; 3)Z A AML 4 i+, VB NRIPL e &
O A G T S S T, MBS ATRA AL AT HE— D 9 X — 200, #2785 NRIPL AT g2 ATRA ffif
2R A T [18] . X S8 H E R AN A SL T NRIP1/LOC101927745 1E A fé AML K5y Fhn &Y, &
7~ 7 LA NRIPL A ATRA YEYT 1] R B b R 24 1R S, i B0 1k Jif e (RS R VR 7 440t 108
TEHE 55

3.5. NRIP1 ZEE i SEFE PR LA R FF R4 ThRE

NRIP1 75 H At g v R 4555 B BRI EH . 75 & B HHIR 40 s, miR-548-3p F1 miR-576-
5p REfZIE I U NRIPL HIIE KT, AT 3 568 it 788 40 i 1¥) 3L #8 FH42 28 6 /3 [20]. 7E &R, Chao
ZE[1910F 7N R ARIE T AR AR K T 3~9 [AYEY) 2 (Suppressor of variegation 3-9 homolog 2, SUV39H2)
A H3KO = FHIEAL JTER NRIPL Rk, AT (22 S Wi a8 (NPC) R E g o 72 JH e b, NRIPL 473
R T «B (&M, A R0 b8 FH % B 41 i (tumor associated macrophage, TAM) [H 42 8 M2
RO A, AT A % 470 b 6 435 B R 00 o) ok 8 % 7% (R0 4 FH [21] [56]. 28T, WEFERM], JHmZH 4% NRIPL
MRIL A FEAK, S BOX P IE FHURES, SAfedt 7RG . TR MR [56]. X LR AL K
B, NRIPL £EAS 8] 088 b m] Ge il A [J] 1) 4 7L 2 5 s R AR R e, LR R D fe B 835 i AL 23k
R
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4. NRIP1 fEME AP RIER R ENA
41. fERCET SRS YFREYNE D

NRIPL 7EA Rl 2R KA R S HARE T, HRIEKPE SR AR EAHE . B
UG E VIS, HAERAARIER R BB N B . AFRIE S5IG IR ERHE R RS, 280w Fh
LIt Rk R SCEE, FLIRME T NRIPL it ik s s n i i . B8 AR 28R 1, HA4
S IR IR IR DG, RTEA RERE R [27]. H BRI M (OSCC) H Hid R ik
i A 4% NSD2-DGCRS 4, 5 iR VAR L IEAR OC[15] o M ARAF TG 7T, HUR M CRC FEAH S
K] BEHR ARG TG [47] [48], B i o i I8 W2 Pl AN R i Sr KU BRI 7 [57], B8 i NRIPL 5%
MiR-548-3p %, AL > T AT AE RGP FE AL, s 502 W 5 5 1 IS IR (T Bt . A
I, NRIPL 7EMIR T 245, e RS Oud i iRt M B E iz, FilJs Pl S va 97 e B 1l
WAEIbR EHIE T, AR FTRETT R bR A 7715, A HE A L 2 40 e ALK, Gi—
FEAARER . RS 45 A ubrdl, BRI ZE R SEMS RWE: EFFRZ Pl KHURITEK A
FIBTL, WMAAFEIEM IR BURE, RGO HRE SHEM . RSB 057 8RR AEAE AN
M, BABMSITUSIME, HIRR S MY SRS RN, RIS W 5 TS PP,
AR ST 77 R e P AL T SEAR Y, AN H M FERBAF 5T [ 15 PR S 4K, o

4.2. {ERIGTTERIRER S

NRIPL {E e T 40 Mo A% (G SRR 7, RO ShREAKI i 45 M 380 5 88 1 - R P RH B F T i
¥, H45H %% RDL. RD2. RD3. RD4 S5l 4higis, (HEEZ AT RN 4SSO, 4
GieWb s i 2 R, H R oR W ESEAECAIRIE, R ST SRR L SRS A1 s
FRBEE/ING T B AR SIRNAJShRNA S NRIPL fii 5 2 301 oo 40 A 84 5 55 S0 T, (EBAEAE IR
IR E LR KIS P BE U AR BE D) B0 ) &, 1T [R) R ) R SR AR LR AR S R RN,
W25, i, AP-1 (C-JUN/C-FOS)E#23Kz NRIPL #3%, ] AP-1 JiEE(l1 INK #41I77)) af B# ik NRIP1
ik, M ESHX M X 52 146 -ERa-PGR/ESR1/CCND1 H)3Li12[58], Bear B8 25 v] & 2 3R T N 20 il
BT BURYE. RIS, B NRIPL R € 8 - 8 EAH BAE I B A o AT M a4 50 BH W L 5 %52
R (UMER R SZAR) 2, RIS B MO B e St AR s LRI 5 M 38 5 e s R 1 1) ELAR SR T A
TP TR R R TG 7 XA T A ik, #0135 20 8 p s e S LR R R T 45, AT g
BURES S EFRZE, Z5 1, NRIPL 25 2 MO R BAE Rt 2 NI s, @i — it
SER AR R M R, HESIRGUETRTT SRS T K

5. ZitFIRE

NRIPL F R R A% 2 AR ST R 7, SR o A5 M n e e i, 72 R DR R S R 4% v R B0 HE X
Deg. ARLZER RS T NRIPL /EZFRBME R P B ZAEH . BHAERY], NRIPL A% ThRe A &
AL e IR BRI, fESS B A I b, o R BRI B R AR A 1 E L
s f 2k B R 1 I 25 2 BRI R B0 B A PR R e o X PR Th BB “ XU AU
YT M 28R, 3857 B FLW AN E AL . R BAEAB IR DL R A 505 5 R G s . RE AT
NRIPL £ 8 R -GN IS R 8, BASTHIG 2 Pk, AR 78 nl i R H AT R AR @b
NRIPL Tijfg () 5 5 P FF R A TR 7T NRIPL %% 5% 5 121 J Fe DR 4%, 413 NRIPL [m] s PRIZ W 5 16 77 #E A
ek, — 51, FHEEEA NRIPL RIAK V. WA E N G S EZ 250 THORIKR, UIHE
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