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Abstract

Lung adenocarcinoma (LUAD) is the most predominant pathological subtype of non-small cell lung
cancer (NSCLC). Although radiotherapy (RT) remains the cornerstone of LUAD treatment, LUAD ex-
hibits high radioresistance, which significantly limits therapeutic efficacy and impacts prognosis. This
review systematically summarizes the research advances at home and abroad over the past 15 years,
focusing on four core mechanisms: mitochondrial metabolic reprogramming, the tumor microenviron-
ment (TME) and autophagic regulatory system, epigenetic modifications, and dysregulated signaling
pathways. Additionally, it summarizes the current research status of reversal strategies, including tar-
geting the tumor microenvironment, epigenetic modulators, and combination therapy. Combined with
the latest preclinical and clinical evidence, this review outlines the development direction of multi-tar-
get synergistic therapy and personalized radiotherapy regimens, providing a theoretical basis and
translational insights for overcoming radioresistance in LUAD.
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1. 5|15

LUAD E A B B ERE R, HOAR AR, HA S A mime i [1]. RAEHMBEIEYT . SLAKSE TR
T REBRAWIE &, BUTHITE Y LUAD 835 R )T R B 2R K 2 —[2] . BT #RT AR 52 i R 4
JRE o 22 o 5 R ML 38k i 2548 AT (IR) 5 5 1) DNA 545 S A T, Ho o FHLES S bR it 5 4
R BEROAME S AW R G RIS RIE R (G5 ER RIS TR S AN R,

2. FliRRFE USRI B9Z D 53 F AL
2.1. HFRINERE

LRRARAE TR0 22 175 5 81k B K (the antioxidant stress system) i Lol 1, He 5t 42 il SR 4 2 TR 7 41K
U R AA 2 R 3 - Averbeck 5 [3]HIESE IR RIIE IS BEARGZRL /A DNA (MtDNA) =k 8] 4255 575 L4 (ROS)
1B, MR ERARTIREZR AL O AP0 ML 25 5 A0 T il i 2 R A 77 im0 /e, a0 3 BN
T2 fAATE FEL 7= B 110 Jieh 8 4 L 2 %o PR A B B 40 o 77 = AR HI PV SR 4R ARII [4] . Liu SE[S1RIBFFIESE, 1E
LUAD 1, iEfbk O~ H0, /1 S 41 e /735 2 83T c-Met-PI3K-Akt il c-Met-Grb2/SOS-Ras-p38 i& 125K
LT Ak, JBURIT S ROS REWS IS Keapl-Nrf2 A1 PISK-AKT i@, 5 FiEs 5t LA
1B, AR TBURICBLS]: Befa, U HEHUSH At 2 i ik 40 M 0 T A5 5 g, A e A .

RTAF 7T B R R L], EAENUHIARATIR B BB B S T AR AN, BRI
H—, RSV Z ST AL . BUA I 2 0SS &, HME DU 0T i 72 o B /K T 2oL
AN 2 2 5 S5, ARBHMREEI RIS g R e 2. 5=, INRERBR SR, WA
WA AR AR AEAS Y, e DURSSAUL I s S L SO B0 R AR AR R s . RSR 5 256 R A AU
FRAR . B Remi NI BRIk R G, HESNBRL AU AR AL 8 Im] “REHEIRIT” GRS .
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22 BRERMESEEIEIERS

i 98 A 35 it R i i T HPL I R B F L R 3R, Hdd HIF-1o PR U L T TR BRI
#il. Lee ZF[6]WF AR, LC3-Il EAKFTE, RN p62 & /K FISA N, LC3A/B FRiLRE, X LA
FEERKW RT FF AMRIAN N, RAAWIERKS LUAD F 0 T8 A ASUR Pk R HE % . ek,
Xiang Z5[7]WF Fe 47w, i B4 R AR =4 2-HG . BEFARR B 5 5 IR i 4] HIF-1a 763 2 N IFAE
I FE 5T HIF-1o B2 EEAGFIBE J5 1O B AR IK) HIFL PHD SR SR MEAR AR 1.

EAF— 3R, SuTot SO RAEN LR AT IR B S AT e 1, R — PR IIE. Ho—, B -
W i 23 S AR AT AN 2 . =, BMEREAES AR B RIALHIR IR . =, 4EM R P S ROAEE
BRI R

2.3. RUBRIEIFRE

TNBAL VA% ZRAELLE BT HCPUH RAE SRR, 25 % DNA HIE(L. IncRNA /i 511 S R T ER S5
M. Gong ZE[8]RFFLUESE, RS HEPLAN M - e 2E K Maspin J& )7 X i F AL S BOLRA VIR, i o
P I - 5- FL A FR (AKBA) AT I L 4111 Maspin H 2364k, 306 AKT/FOXOL/p21 i B 56 Uit otk Bhah,
INCRNA CCATL K& Fifl, 33040 s U PUiE AR o5 [9] . 1% Lk AR I R A% 2 ) - T ]
R J A 10 2 TR R R RS

EHAEENE, AR ZRER MBI, 1 DNA FEE. HE B circRNA Z [E )
A BB PUR S, MAREE 2B AR RGN, ML TR R R W s A% 5 gm R B, Kok T
S LT M W 2H R 4 P 2 AT

24. [FEEEBRFIS THEMERY

SR A 5 T B SR WS A 4 R R T4 L (CSCs) 5 1 5 U RPN AZ 0 [10] 0 Ji ZF[11]0F 5T R W
MDMX-P53 i #% i iyl /> F W A1 P53 22 K3 S FEUH BBk 1 . MDMIX il B 38 FLAFR AR A7 3R IA
98.11%, % TIKKIAZH(93.62%). STC2 1ENHT K I AIBURHRPUHCEE N, 1ERyT Pt 8 R R
E T, HIET R PIBKIAKT 8 #6382 40 i v B T2 i RE ), STC2 mifICnl fff A549 4HMux} IR ) BU=
2Tt 40%0LL -[12]. Bt4, NRP1 5 VEGF165 HI45 ARt EMT ARG s f 2 22 vk St 2514, i) 55
EG00229 mJ i@t FHIMT & 454, N Snail. Vimentin 25 EMT Fr&##is, W A549 5 H1299 4 i)
BT BT[]

S EEZAISHE T R S B, B =, B, AR Z RER @RI /ER, 1 MDMX-
P53 ifi % 5 STC2-PI3K/AKT. NRP1-VEGF165-EMT i % () R AU HLHI AN . 2 —, CSCs itk 5
RV LRI A2, BUE BT R IR AR R AL CSCs A Eiki@ B R . Ho=, PR i 355 1) 1
AR AR T 0 B, T AH O AT AR A H 58 20 B 2 U R A L R - G e 11 4% CSCs 5 S il Bk s, gt

SO TR T, B SR A R A 2 ) B0

3. PR ARG ERED = 5 AE SR
3.1 MAHITHEAR
HAr, S FIEIT SN BT R —FRh B X RiaIT A, FABRE FERITERE. 5ESOETF

MBS R A MOBAE W A R R A R AR R, I I B LR 1, SRS T B RO, P A
FREH D TESFAL SRR E . ZRM T DNA BB R . SR 52 L MR T2 Ae e, 3SR HRHiRe .
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BURIRITHILE, iR A TS B EE T R MR E A B RN, FFEAR
T4 /f1(CSCs). CSCs TN N SMIRIRE . SARIBUHRITA % AL G BUTFEMIRE Lo i
RSN, AT BESE A AT A, AT E CSC ZHA Y CSC Rk, A& SEUBSTHDT. XM M AT LA
R TRTTOREM . BEAh, HE AT 5 DNA M IAEN, S5 loRr iR DNA 457 2, XA
PR e A 5 0 DNA B RGEAEE, S EUM R A I =isE 1o % [13].

3.2. ERTTERARIT

MET il 57 e e 5 JE rT BHIBT NRPL R {5 ‘i, 5 EG00229 P [A]1di%, EMT AHRBUTHRHT[1].
Oroz-Parra Z£[14]W 5 % B, s-call4.1a R v] G {6 NFkappaB-1 B R dE 4 I SE T . 42 [7) NFkappaB
Fe— R AE VAT 7%, BT e BRBSUHHET. thAh, TRF2 & (it e fe (kg #, 764737 40 0 %
BRI A T OCEER . Moro S8 N[15]HF R | —F 2 DhREGIKT- &, (EHIH] TRF2 FRIE M [FH,
I FH & 4K A (AUNCS) (14 6 27 R AR 1 2 R M i s 200 G TS0 e b

3.3. RERTTERRARIT

TSR FTR LUAD & £E B8 S B8 R B 10 (1 PD-L1 B 334), Li Z5[16]RF 58 &I, SRS M7 (e 2 i
P R T B S (AR K 7, {H PD-LL F) LA e 28 3P G e B, DAL DU TS R 1) 3= A L
AT RERUIPIR e (K FE, 5 e A S A vT = A BRI R A% 7 AU . Fotin-Mleczek S5[17]%F 58
W], mRNA E B 5EFIEBUT A5, A/NRIENE Lewis AL (LLC) =28 1 9 21 i W R4 i3 24
B, UESE RNA Sl i 97 507 A 10T 2 T LLC I8 1A 280877 SR .

3.4. R[] PhIERIIREE

PR ROABE(TME) SRS 2R 4EAL S Be il 2 U R PTA L2 “ 37, X VE T 1UA] 35 4R T 1
JTRCR . Malekghasemi S£[18]WF LR, HAZANML - EWEANIIE K2 TME [ EZA AT, MURHCE
WA B (TAMS) FTAE AT T4E R, Rl TAM Bem M1 ERRARNT, B 1 B (1A Ve T SRS

3.5. RUBFBPESKIHTH

HIE A% OB EE(HDAC)HIFI A sl i 2 ML B, B8 IR XFBhJR 40 e DNA #5145 (R B
B, Xu ZE[19)8F FCUESE, HDAC FHI55I4k 37 i At im it HDACL/IAKL/FGLL i 5i s i o i g 4
P, WU HRPT R IR A
4, Bes

gx b, iR RO PR AR R TT RO B —TRUT 7 O “HEARKE L + BESAME + A
hFAL” LA SR IE, TEIRIKRSE R, R4S & B M0 TRAE . MR . RS S R R AT Mk
1hi%# . H §i, PDX #5714 (patient-derived xenograft, PDX) 5 {5 {7 B £ 25 [ J87 188 4% e 1k AR S5 o 1k 1) 10 35,
78 22 Fh R BB IR LT AT b, BERBL T i USP14. MET £ 0] I 5. 309 07 25 i i 265 T b 64, X
BOUE T 1 2 A RN BLE IR YT SRIE o XL T PDX BB I R AT 78 e SR, 1R IR I PR i 056 B
S SR B - BT ER R IG RS - B8 N TR IR 5 & 51697 7 MR AL B AT, FRERHE S U HE T
BE B EA RS, ERK, EH4ES MiniPDX ZMAE S, PDX ELHITE I PR i A4 i 5
SRRz

AR DNA #if)j: A BB T

)G, 7E DNA RIS SRR AN LS E, 570tk DNA HififEa, 2K DNA XUEERZE. SEERT
RIS, HAa R &

i)
B3 T W DL T ROT S RS TERY, BEEEER,
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