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Abstract

Autophagy is a key mechanism for cells to maintain homeostasis by degrading damaged organelles
and exogenous materials. In recent years, its role in antibacterial immunity has attracted much at-
tention. This article reviews the mechanisms, pathogenesis, and therapeutic potential of autophagy
in bacterial infections. Autophagy can recognize and eliminate intracellular pathogens and activate
immune responses. However, some bacteria, such as Mycobacterium tuberculosis and Salmonella, can
escape autophagy through specific mechanisms. Autophagy regulators, such as rapamycin and met-
formin, can activate autophagy and enhance the host’s antibacterial ability, providing new ideas for
the treatment of drug-resistant bacterial infections. Future research will focus on precisely regulat-
ing autophagy pathways and clinical translation applications to develop more effective antibacte-
rial therapeutic strategies.
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1. 518

H I (autophagy) & — Fii ik 7 e A AR A 9 RO R A B 1 5T . Al 8% S /MR MY, DAZERRN f
FASHIPLHIIL] [2]. IEEESR, HORMZ R AL, EWANAEY B REFPEER, EERZE RN
R EEMME], NHERINETERZE T . BNTE F AN EAREE T 4008 2, s FiEdE s
W S N SR ) V7 P i Ji Ak, 33 iy SIS P P 5% K [4]-[6]

W E 370 4% A B 1 R R LAE B P s TR AR R L BRI PR DA N A 8 S B A 5 THT
IEFETECT , A Py TR AR 2 4 B W IR AT 0 S 1T 2 A W /MR I S VA B R AL &, B A BAAR 7] [8]. 281
— BRI B H BE A o 22 PP L B TS R A AR B B, X Py BRI TR R R A B I S eE PR T Bk R [9]
[10].

AN B TE LSRR E WA A0 o RGBT, R AR o B o 5 18 i — 5B 4 ALY . R B
SUARIGARIGIT B N W 77, RIS 58 A B B R 20 A5 1 o] 28 3 Ak 1 B &) JBVE Be oy IOvE,
15 F R AT VE RO HEAL IR AL I AE 2L,

2. BEERSTFHLE
2.1. BERMERITE

MR AL — RIURTAMIR LR, SRR PG A P PR (O (L 58 T 2
A2 P MU ) S R R, A S M AT BRI R 11]. I B
SRS, B B ST R S EI12]. BEAh, BRAUIE R T R L P D

% W LR IR W S LAt F T a[13], X SRR AR B A L — 2D A T IRA T A ERLHFGR, W
DIARSRIIA BT FURTR T S 4t 1738 i) S B A 17
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2.2. BMEFHIR RS Rk

E AR R RO 72 B — RO B . B4, ULKL A4 ULKL. ATG13. FIP200 %)7E
e Bk = BONIUE 5 R OBOE, 3 BN [14]. B8, Beclinl dliid 5 VPS34 (35 PI3 i) AH HLAE
ek E g AINMRETE . T LC3 (ATG8) Wi I 45 & 21 | Wi b, 35 Bt — 59 A A [15].

1EAWRATE B E I RUG, R SRR G, TERCE WA R, VARG A B2 B A Rk
TN B . KT BWRA S EEERRL G IHLE] B BT 0A 7 RERFST, H snare B 6402 — AN RE S fl
BHEAEM, Hi@id SNAP29. STX17. VAMPS 1R 15 A # F AR FR AR S5 & 75 —ikg[16]. Itk
Ab, A SRS B AR R B, B K SNAP29 ) STX17-SNAP47-VAMP7/VAMPS Fili &l
H[17].

2.3. BRERIVEIEHLH

WG A2 200 M Py — o B S ) SRR RO AL, L R 2 30 2 i S B ER R Al 4% . o, mTOR (18
LB 0 2 LA ) A AMPK (5'AMP 380 28 S0 ) =2 AN S ) R R 1. mTOR /R R 40 “5
FARIRER” , FEAMRALT RIEFIVEFRIRESES, AR RS, MR, 4 BT I A8 5 A 2 BN BCIR
AHF, mTOR (3G TESZ BIF0H], M TGS B W ON[18]. AMPK 2 573 — 4% B (1 it AL JRGE %, & 7ERE
SRR I O, I R SRR R Y AR AE[19] 6

SR, EWER LG A Fx s i . HARE S5 4%, W PISK/AKt B fI%E, WA RIS
PR R S B 5 FE AR BEVE[20] [21]. 1 MR VS i A R A 1 o R IR 52 B4 i N 2 B B 1 )R
1o i, Rui Zhang HIBEYT K HL, DRAML i@t E3 &4 STUBL/CHIP X1iAEG1A VAMPS 172 2
ISR, B5R T HIRERIRIIE R, PR T B RE[22]. Zhenzhen Yan [ 7R H, GPNMB
AR SNARE AR MZHRE, 520 [ Wk 5 VB ORG24 5 5 4 L P A B P3G B8 23] 0 X
SR FLR I, BRI R AN E RN, ¥R EFME Sl AR A B, X S 3 [
R T AU LEAS R A= AN ST T AR S T A A7

3. BMEAEMRRMERHPEIER
3.1. BMESARRANRER RS HER

WA A 20 PRI B AOBLA, 2 4 R 3 Y B AR AR ) BT B TEX AN AR
I (BUFR A Xenophagy) K454 = 0 B AE A, B4 AR B Wk SR 14 53 (7 B [24] -

W S ) 00 T (0 AR R B R A RUAR [, RS AR I RE R ECHA ], B A P 9 A Sl 4 s 4 A
PIOIRANA(DC)  F MR A AR 1 SR 5475 20 AR (NIK) I 2 50 TR 1 4 2 400 P il 3o 4% A A 20 IR 531 32 44K (PRR)
AFHEARIRT Toll BE5Z244(TLRs). Nod FEZ{A(NLRs)FI C BlJitE %K %244 (CLRs) iR I[25] [26]. #R)E, Ta
Fl AR AR SR WA 2 PG S, R 2 R R RIE BT RE, AR, B, AR TR R
PRSI, B KRN TR EAR[27]. S54% 0 R AT B Jd I LR T Y PE_PGRS & 1 516 F4IMIEZ R R4
FHEAEF, 85592 F0 28 A (0 NBRL. SQSTML £8), M T4 1 5 200 A AT FE W AL At 0 1) 3 28 o) 381 5 e
A BEAT AR [28] . R AT T 2 T8I 0 I 22 B (LPS) AT 4 15 T2 4R % 1T ) Toll BE52 44 4 (TLR4) A i A i) NOD
FESZAR(NLRS) R, BOE TS S8, Rt 980 R 1 1) 7 A= A B T [29] o 4 288 6 7 26 BR 1 1) I R M
A4 NOD2 R, W0E T UiE(E S, (2 0 R 1 = A AN 40 i 5 W [30] . b4t ¥ I IRE AIHEE R A
A4 Toll #5244 5 (TLRS)H, HEIf 5 S04 B A 1% KHLHI[31] . X Leq5] 73 B, 15 F2ilid 2 M PRRs i1
AN FEIGHEE 1) PAMPs, 83 2 P RVE S sZ B D Re,  LARIXT AN [R]4H B 4 [32]
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32. BEESRERMAHEER

H AN AE TS R 20 A P 73 SR AR 7 T R AE AR, BRI S S N R Py OB M . it 5 g%
RGMZ Ao FEIER, HVEREWEIESRTE 11 R BHRE 1, EEARIE LT 7 :

Wi T 7 o 00 B PN PR D A ik D A 5 | R ) A LA R SOE IR S (RIS, [ W R 1R SR Ak
PR SR AR AR G 73 T U(PAMPS), OS2 N HIE Sl %, 1 NF-«B F1 IRF3 45, MR 3E 28 A KA1 |
RFPR R =, BB R s N[33]

H R BRAN TR Fr TN A 18 B I R A AT B A o0 ik RSO/ MR B o X SR TR RY: 48 38 28 L Y
5 MHC Il /37454, m TIURZIBMECE, LR T IURM Z et ffa e, A Shis
CD4* T #4HiM[34].

W T e AR T RE, (R e LT . BN, TERS SR, E R AR A
PR LR, T A B EOE T 40, (2R ic it e, EA0TE FHRNAR N fe 8 5E PRt
BeBg, FeA R A G I M [32] . W Ik 3 S SR A AR K P SR AL B R RE T . TR EGE R,
DA T B R 20 B () A W VA B A D R« R T JORE DR i, AT AE B8 SOSE R FE B EAE A, sk T 4
FBE A, 3R RIS BRSO, YERR G 7 [35] [36].

4. BES RERIR

EB R B W 1 4 R AT AR A S S BT AR, (VR 2 AR AR R e A 2 &
KR — RPN IR NS, R I G B ) 5 S PR JR 2o 2R T ) e B R S AL ) 8 EL RE 6 1 i SRR B Y
G ETE, ARG 98 7 HEOR AN 254 . DUR & — 25 3 B REk 1% B W P 240 o Sz LML«

4.1, IITRERZEEHLH

7011 K (Salmonella typhimurium) & — 288 LIk 8 22 (R M B A 18, e it 2 Ry L 06 i 1 - 20 i
PIEVAER .. WITIREEIE E 2 R RGO A VRS2, i 80y 8 [ 4] p62 1 NDP52 (143 3%,
0 A0 T A AR AR AR L2 [37]. fE AWRE BB, V1] IR IE I N 8 ) SopF #E ] P9 )5t Y
(ER) H K524 FAM134B [HIEH Rk, [FI K RETREGL FIBER LA 14k, BEim#n] ER Mk #E
F1E[38] [39]. B4, SopF #i[m V-ATPase [1) GIn124 £ fiidt4T ADP-#EZE(L, FHIEr V-ATPase 5 ATG16L1
BIAHEAE T, A0S AR R RG,  FEBEET E WS VR A R Rk 40]

UbAh, YOI QB I8 i AR 1) Type HI 203 R G0(T3SS) 73N & (1, 40 SipB. SipC Al SipD %,
ELEEAME] W NARTFITE RS BHIE A WS R IE E 30[41]. 3 SPI2 B 11 /3 RGN, Wi SsrB
SsaV, AEfEiE mTORCL S, [FIFEREMNH] AMPK J&E, 2B 0] [ WA R A [42] » X LML SL[FIfE
L, FEED TR AETE F2 400 P A A7 I D681 3 1 e % B A

4.2. FRSHEATERIRIEHE

S50% 5y BOMF R (M. tuberculosis) & 51 RS AR M BUR B 2 —, BAETE R AN A I B8, FRe
EEWRA M R EEE . BFFRM, 4580 RO s R (L e e il B g B, A HAZETE £ 240
MO A7IE ok, X RGZRELIR B AR S E R E T R

B, @it BT E B miR-30c-1-3p #E[A) ATG4B Fl ATGOB [43], LAK 4yt PE_PGRS47 Fl
PE_PGRS20 &, S51aF:1/ GTP i RABLIA MHEAEH, Ml BRI s 30[44]. dhak, Horuhm
Hsp16.3 [45] LA Jz PDIM it 20 LC3 & /K, BEHR [ WA I B [46]

HIR, 5 B BE I 40 ESX-1 7r W R E E, ] B ME SRR S, 545X
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S BOFF R TE A 40 P TR B — AN S5 A% 20 R AT T 1 8% 544 (phagosome) , 1 A48 14 TT LA A0 5 5 VA i 1
IR, MR T 5 (1) e iE FR[47]. RipA B #E PISK-AKTL-MTOR {5 54k, i B Wik 5 55
R A [48]. SapM @it 5 Raptor AHHEAEH I £ EEA, 1 Raptor & Ser792 1 Zkitk, S
MTORCL Jif P 7T A [ Wit Ak 5 V5 Bl s Rk 5 52 BEL, AN T 0 1) 19 W, 1 3 2 S A 1R 7 15 W 40 o o 735 [49] [50]

UEAh, G54 o R AT B I T8 T 0T 2 RS 5 38 B SR 1 TRk 1 . 51, PG ST B TE R R RS
1] AR ) A [51] - Pp A S 4711 MAPK HI NFKBL A5 53 1 , Y20 470 45 4% G 28 2808 R 1 F1 7= A [52]
e, Rv0222 i@ TRAF6 1) K63 i&E4:z #1k, 0] NFKBL Al MAPK {55 26 [53] . 1X L3
[FAEF, 35 B A5 A% 5 B B FE A =5 20 B P9 A A7 Ik G 22 7 7

4.3. Hith4He Y ek i@ Hl

B 70T TR A A% o BT, HoAt 4 1 20125 il A 5 (Campylobacter jejuni) A1 2% K B (Shigella) .38
TEAS TR RO ATL b 0 3 1 eV 3 o 25 HET AT B 11 4 i S0P 2 K 25 3% (CD T i i #fi1) e-Mye Rk | F&IK HMGBL &
15 K 3 AVO FE R BHIE H WEAAR T B [53] . i 14: 4% 2R B (Streptococcus pyogenes)id it 7374 SpeB & H B#
fife H A2 AR B (1 p62. NDP52 fil NBR1, M ik H W [54]

i & B 1 (Shigella flexneri) FII A IesB 2 (PR IE IcsAIVIrG 55 ATG5 454, kb FIWGIRTE i, FF4m
AR 5 s B AR O Rl A [55]  FAAZ T i 3 A= Z8 1745 B (Listeria monocytogenes) 73 ActA 2, FHLIE W52
PREE 1 p62 F1 NDP52 155, AT kit [ W [56] -

5. BEXiRERRAN: BEINEMERNS TEIM

B MR AH SGHE DR (AT Gs) I D E 22 A5 1 RT3 BOIMA ] B W0m B2 5K, S S5 o 1k LA A i i 37 ok
RO PRI T A S AP T ICR R T IR PGB TT A% Lo 2B “ 7 B A

5.1. ATG EEZ M ERE5 M

ATG16L1 T300A W TR NI DI REAL 7, %A kUL T B WG A TR F A 5% B 25 Ay 0, 38517 3 L
ATG16L1 FEEFaE ML R %, B WA R R 2 PR [57]. ImRBAAIRT FER W], 1E50 % BUp &, T300A
ARSFEAEVO T ER TR A KU I N 22 40, JF I35 H 95 E M 2R SO 0] JEL P B RIS B RE U [58], SRR i St TB AN
R T HR SZ T B

IRGM (%A% GTPase &k M 4 1) Ja 2l 1 X 2 A&V M FEBL 1 28 i (X R B Re SRR RN AR 765 AR
Hi, IRGM XU LA U il 30%, 5 H: WG I 15 W P ARG B 5% 20 BT BT (M) 455 B S 35 A 5K 5
TMAEZR I NHE A, 23 70 TB 5y A (3259 , (H AT 2 MRCRIAR 11 & F R 75 3770 1R )7 R8CR [59] [60] -
HL_E, IRGM 722 5 il 95 Hoo F AR - IR IR R & R 0L HE R T, 320 Mtb 3B 8. 1X 43t T IRGM
BB oy T AE AR TB R X B I RANME

5.2. ZRMXMREAT R MAEE

T T FE RN P sg ke By ik, o8 BB E R S 7R 97 . NOD2 Leu1007fsinsC 28457 77 &
BUm A L, AR fIH] ATGL6L1 MI4H# R B0 m Z54E, SEE VR shihg[61] [62]. MEHH
2lifdi il AMPK 0 77 (an — UM BCR A PR, MBS IFN-y Y897 I8 JF NOD2 BhfGiEE:, WE B WK
F%[63]

5.3. [E/MEHTRIIGEKREE (L HEEE

JUEAESE Had 7870, H WD R R 3 ROR UG IR T Ui Im bk . 155, 2RSS AR R 440k
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i BRI R RN, ATG16L1 T300A 54E4E % D 524K (VDR) Fokl £ &M AA7E B3 AR, H[H Ve Mtb
RIS 1 98 RE 25 R [64] o FLUR, D Re Be ik I 2500 PR A 1 R S A, 70 o L o A A 4 ) ) W A 0 (L. C 3-
/LC3-1 LAE) BRI 4 S ANMA B W RE 77, BS54 2U0E B B VRN A i SEBR DhRe - 2 57 . feda, Rl
ITPE I R AR, H T ATG D panel il seA e s,  Hk = BOVRH SO IR 55 PRI 7 2

6. BESIEKATTHBIR
6.1. BREEMEATTHREN

R HRTCIT R Z IR TS, WpTAEZ R R ATk, (EL2 TR R 24 128 1 DA 7 S 20 T 1)
RAFAETE S, AR BRI LA B ARG O IR X . AN, PUAERSEHUR A WIEAEAETE 2 17 e, Bl an e
e DL S 240 0 A 0 5 B AT R P S SR AR T 4 . PRI, S SRR R AT U R T W RO T A
PURG T AT B S5 QBT XA T 7 6o 38 3 14 15 Wt 2 PAY A T (1 205 2K L Jl oy — o ARG 97 Sk,
) A A THTOS TS 24 P 200 T PP T S 3800 1 v e Dl PR B3 10 1

6.1.1. BMHETFIRIRA

WEAER, Bl F WEAE DU B Uk ) BB MR R, BRI 2 (1) 2 TR TR R B W A T rE =
SR PR TT . BEAN RZR T 2R AR, 5 mTOR il 741 (40 # iH 85 2<) F1 AMPK 80 75 (4n
IR, EATIERY SR E DR ABU B e R EE A . RS RIE NI mTOR ]
A, JEEHE mTOR @S, REOSEUE W, NI 58 1 3 40 M 40 B 95 B 7R F [65] . SRER i ik
BH, IR SR EVR T I 25 YR B 7 T A 70, Reidad R ik 1 MR D A 3 ) Sl B e Ju[66]. —F
WUHCAAE Ry —Fp I F897 BB IRIE 259, B REIEL S AMPK @R, (et AWeEr kA, $FEFH1E a0t
YHBE IS BRAEJ1[65]. TESRZIRIEFH, BHERATRIINGEIE % 0 AT H I SapM & BA EZEH.
SapM REME AT FH T W A4 T2 RSP - S B LA B i W A RS S P I B, (i A e R 5 VA R A PR 5, AT
R F WO AR, 3 PR B R AE A N 2 B R AT 2R [67] . HOEE ik 1500 2R/ EH, WA
NIRRT RIL T BA HE 52 S P HI AL 1) SapM B B i s B PEFD R RI[68], A5 A% IKaTT $ 4 78
VSRR SRR TT 1) o VA O T 24 R B0k B A 1 I e P B HL A 4 P P 7 R RS, A I A
ANWHR I, AR B TSR TR B R AT )

6.1.2. BES&RERTTHES

TESRPEIRTT A, BAVRRERILH B ), JCHAELS & Sk B s 477 (40 PD-1/PD-L1 41 551))
I, AT R AE G e OB, B R TT RUR .

FET T A (SSA)E T A ) 4H 8 9 25 2 BEALES 6 (HDACS)IE SR [ %, 301 45 1% 2> BT B (Mtb) i S (14
MeEEdE. SSA 5 HDAC6 FHEAER, M HEEPE, Bk AMPK/MTOR/ULKYL #iif15 B W, 4% Mtb 75
SHIEMEAAL e, IERETETT ot B (1 (Lys40) H) LIk Ak , I8 /N BRI JORE R, R A% Gy R 51
JE I A B B e 3 08 1Rl LS5 A% 25 M 03 71 [69]

TESE IR S, mRNA Z5A%0 % Bl I 3 2 B W R LA AE - . i8R B, miR-107 =3k
K AN IMARTE G5 %00 FR 3 R . 52 03 R AT T B % 1 [ e 4 8 T30 P A P 99 DA B 52 0 BT T T ) /D B,
M HAELE, 17 E Ak 0 HE 52 3 2R A A A A DU 2] o 3% o &b A e 3o 18 037 14 4L (RO'S) 7= AE R i)
Wnt16 17 Wnt 3@ 2%, {2iF THP-1 EWR4HA 50, M4 i o B AR, 80b 32 s/ N BRIt 4 2
()73 AT B IR G o XA vy miR-107 1L AN MANE N 25 A% i i A2 B AP iC 3 1 mT e, i8R B E &% miR-
107 B A A0S 1t 1 B AN B RO IR T A5 A% I G 1R 8T 715 70] o

FARAL AW/ NBE 2 (BBM)E I T i 41 B 5535 1 S (ROS) /K T+ 5 I I, 23 FAAES HIV-1 AR U1 T %
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HIRA AN A S % BT B (Mib) 7140 BBM 5 SR AR BT ROS il & E AT ORIV g (A B e, )i
BBM LA LA I H BRI A AN 4 (GPX4), I A M B O 4ERF LIS P45 . 131 BBM J&
LT E A ROS 2 81922 AE AT, BRI HIV-1 F1 Mtb 754 I BRI RIS, MTT R EE RS HIV-1-Mth
PR () i 5 735 BT () 37 R IR 250 [ 71]

XL AR, FWR U 7R IG5 5 W S S R T IR, WA ROR KA IR, 2 Rl etk
DIRIIRIT 0 ORI B Ak

6.2. BMEFEIRRSEE PRI SRR

FRUE AW IR RIA T TR I T BRI 71, ABAESEBR R R SR TG — 2 pkik . ok, AW
MR A, I EEROE BN H BT RE S SR ECN R RN, Wil 180 REE[72]. Hk, A
VR 0 e B A FE o) AT AR SR e — Ak . ll, AR R RO RE A BOMOE W, (AT R
RS G N, T EUE IR RS B AR 73]

UEAh, U] AR AN 5] R0 JE AR FTIG R 0 A ff VR A28 1 Wk s I, Sl HLAE 8 R e R SR 2 PR IR, 3 A
XHE BT, AR A EE . BAR H R TG SR AN MR AT I N PR AT 7 A R
%, R REIFREAENIIRI T, WA R H B2 I BIE R R, W BA S0 A [ 24 S it e A
G ARARERHE f2,  CRRYRYT I SR B4 R TE BRI B, A I 1] I R 32 Bk

JRE L, BRRRTTEN MR B RV TT SRR, DR TR AT R, BT MR AR AN WR N
DA E R R B0 — b Ak, B WK TE ST S VR T R R P R R AR

XA R, BV FIASUAE 2R A R 7 R A Re S AR I S5 . BRGTTIE
AT DR B AR S A0 R S R, AN ARt EL AN S A B I A1, I RERE I 5 1 W6k i S ML P R B, IX
U A5 BT B o PR 24 1 e B, e DGR VR 97 T 24 P A R R e i R A AR S B AR 35 . il
TR, A RS AR HE RIS Ak TR P AE R, AT DL S R v A i ok T 24 4 € A R
(MRSA) } Z5 73 FoAF B 0I5 B 2%0R s UroA it PKB-FoxO 15 5@ B HE Mt B i B £ i 1) 1 W v
e IE45 A SR NR) P [F) 3 5515 =X Mtb H37Rv [R1iE FRE 11[70]

PA LW [RIVE FHAMESE 38 19607 i 25 VE A0 R R Qe P BOR . [FIb T iR R, iR T
PUAEF R AN A TN 25 BT AR R K2 RIER, BA BRI R = .

7. RRRESHREASE

BEE B WEAE DT Yo P K F L PEGOZ R, AROR BT TR 5 22 Hh 3R A T An )R Y 1 e 1 9 R 4R T
PUR S SRNE, S AR 25 PEZR B HO Bkl . LR 2 LA FTBERIRIT 207 170 «

7.1, FBEHIRE B EIERE

HIRVE R — NI R, W R A RS Sl . AR IBIE 0RO 3 T RS A R 4% B Wk S
(A5 BE AL PR, DLIRE S ik FE O BRI B WA R I A O . S BRI R R . RNA T AR ST
B, SR WE S O 2 T, 0 Beclinl. LC3. mTOR £, W] RENIA YT 40 B Ik YL 3 (it B AR i 1) o
W&o HHTHREE T VR 2B I R I Y A B R KR, DS SR R BRI T s 0 228 A B
W Fr . Hednay DUl ) Ssel-PHB2-/-5 7 32 Zeki A B & 78 AT ) 475 FEAT B (K S 4L [74] . TRIM27
FETE XL Mtb [R5 #IRF, 1 TRIM27-CREB1-TFEB #li/& — R AE (13 T HDT MI45 - $hs, iy
SERTE IR R IE [ 75] o AR AN IR R0 SR B AT LA P AN R FH R 24 o, [Tt m DR 92 0 1) LA
TN RE R i, B 1 RIT IIRCE .
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HARCAW TR R 7 A LTk F AU G BR, EVEZ AN R E A T, B DR
WA 5 R (B AR B T, s 2 T R 1 R ) B L e TSR B ) T e R SR AL P VR T A
MR .

72. BEEEREATPHNA

5 G e ZR R ) U 2R A R il O S B i R RTE AE BT o AROR RIE FE 1T RE 2 AR R A0 R E
TG B R ANEIR . RS RIRIT RS &, SEEIRITRCR . AN, S5 G AWM TS, TTRE
DNIRTT T 2 20 G AN PR R R T ) SE B

7.3. IERFAR SN A

SR CA V2 SRR TUR W A WA DU e PR EEAE A, (ECR X S R IR AL D i PR IR T SRS
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