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摘  要 

心血管–肾脏–代谢(CKM)综合征作为代谢紊乱与心血管疾病、慢性肾脏病相互作用引发的复杂临床综

合征，其共病发生率持续逐年升高，已成为当前全球公共卫生领域面临的严峻挑战。传统医疗模式在多

源数据整合处理以及个体化精准诊疗决策制定等方面存在较为显著的局限性，而人工智能(AI)借助高效

的数据挖掘能力与精准预测建模优势为CKM综合征全程诊疗管理提供了创新解决路径。本文系统梳理总

结AI在CKM综合征风险预测、早期诊断、个体化治疗及长期慢病管理全周期中的相关应用与研究进展，

深入探讨当前该领域应用实践中面临的关键问题并对未来发展趋势作出展望，为促进AI技术在CKM综合

征临床领域的切实落地应用提供参考依据。 
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Abstract 
Cardiovascular-renal-metabolic (CKM) syndrome is a complex clinical syndrome caused by the in-
teraction of metabolic disorders, cardiovascular disease and chronic kidney disease. The incidence 
of comorbidity continues to increase year by year, which has become a serious challenge in the field 
of global public health. The traditional medical model has significant limitations in multi-source 
data integration processing and individualized precision diagnosis and treatment decision-making, 
while artificial intelligence (AI) provides an innovative solution for the whole-course diagnosis and 
treatment management of CKM syndrome with the advantages of efficient data mining ability and 
accurate prediction modeling. This paper systematically summarizes the application and research 
progress of AI in the whole cycle of risk prediction, early diagnosis, individualized treatment and 
long-term chronic disease management of CKM syndrome, discusses the key problems in the cur-
rent application practice in this field and looks forward to the future development trend, so as to 
provide reference for promoting the practical application of AI technology in the clinical field of 
CKM syndrome. 
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1. 引言 

近年来我国经济快速发展带动居民生活水平显著提升及生活方式、饮食习惯深刻转变，心血管疾病

(cardiovascular disease, CVD)、慢性肾脏病(chronic kidney disease, CKD)与代谢综合征(metabolic syndrome, 
MS)等慢性疾病共病发生率逐年攀升，既对全球公共卫生体系形成严峻挑战，也给社会经济发展带来沉重

负担，成为当前需重点关注的重要公共卫生问题[1]。大量研究证实心血管、肾脏及代谢疾病间存在紧密

关联，相关关联机制研究不断深入使心血管–肾脏–代谢(Cardiovascular-Kidney-Metabolic Syndrome, 
CKM)综合征概念逐渐受到重视。2023 年 10 月美国心脏协会(American Heart Association, AHA)正式提出

这一新型概念[2]，依据是否存在代谢危险因素及是否合并 CVD、CKD 和 MS，将其划分为 0 至 4 期，其

中 0 期无相关风险因素，1 期存在脂肪组织过剩或功能失调及超重肥胖、腹型肥胖所致糖耐量异常，2 期

合并代谢危险因素或 CKD，3 期合并亚临床 CVD，4 期合并临床 CVD 且进一步分为无肾功能衰竭的 4a
期与合并肾功能衰竭的 4b 期。 

CKM 综合征各组成部分并非孤立存在而是通过复杂相互作用推动疾病进展，其病理生理机制较为复

杂，主要是胰岛素抵抗、慢性炎症、神经激素激活、氧化应激、脂肪组织功能失调、线粒体功能障碍及肠

道菌群失调等多重机制共同交互作用的结果[3]-[6]。过多脂肪堆积及其功能异常构成多种代谢疾病与心

血管疾病、肾脏疾病的病理生理基础，会通过释放过量促炎细胞因子和促氧化物质诱发慢性炎症与氧化

应激，直接破坏动脉、心脏及肾脏的正常结构与功能[7] [8]。相关研究表明高血糖可借助氧化应激反应以

及激活肾素–血管紧张素–醛固酮系统(RAAS)对心脏和肾脏造成损伤[9]-[11]，而 CKD 同样会引发代谢

紊乱并促进糖尿病的发生发展，随着肾功能逐步下降体内多种毒性物质不断潴留累积，可能干扰葡萄糖
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正常代谢过程造成胰岛素分泌不足[12]。CKD 患者通常存在维生素 D 缺乏，而这种缺乏往往会降低机体

对胰岛素的敏感性进而引起血糖调节异常[13]。CKD 与 CVD 之间存在密切关联，心脏功能不全可减少肾

脏灌注量从而诱发或加重肾损伤，肾脏功能障碍也会通过激活 RAAS 及交感神经系统、加剧炎症反应与

氧化应激等多种途径对心脏产生不良影响，这些机制共同推动心肌纤维化与心室重构，增加心脏负荷最

终形成心肾交互损害的恶性循环[14]。CKM 综合征各组分间的内在相互作用不仅导致多种病症同时存在，

还明显提升患者全因死亡风险，因此对 CKM 综合征实施系统连续的全程规范化管理，对阻断这一恶性

循环、减轻多重疾病带来的负担以及改善患者远期预后有着至关重要的作用。 
然而，传统医疗模式在应对 CKM 综合征时存在明显局限，患者相关信息常分散于心内科、肾内科、

内分泌代谢科及初级保健科等不同科室难以实现高效整合，诊疗过程中需综合考量心肾代谢相关指标的

相互影响及多重用药安全性导致决策难度增加，且不同医疗机构与临床医生在疾病风险评估、治疗目标

确定及方案选择上存在差异，对疾病进展情况和治疗效果反应也缺乏高效连续的个体化监测方式。当前

海量结构化与非结构化医疗数据、多模态影像及多组学数据的不断积累为人工智能(Artificial Intelligence, 
AI)技术的应用提供了有利支撑，该技术的快速发展也为解决上述临床诊疗难题开辟了新的方向。伴随电

子病历系统、医学影像数据、多组学检测技术及可穿戴医疗设备的广泛应用，多模态医学数据表现出指

数级增长趋势。AI 技术凭借它在模式识别、冗杂数据挖掘、预测建模及智能决策辅助的突出优势，可以

深度挖掘解析数据中蕴藏的临床价值。本文围绕 AI 在 CKM 综合征早期诊断、个体化治疗及长期慢病管

理全周期中的应用与进展展开讨论，探讨当前该领域应用中面临的关键问题，同时对未来提出展望，为

推动 AI 技术在 CKM 综合征临床实践中的应用提供有效参考。 

2. AI 在 CKM 综合征风险预测与早期诊断中的应用 

CKM 综合征作为心血管、肾脏、代谢系统病理生理相互作用形成的疾病综合体，其风险预测与早期

诊断需突破单一器官评估的局限，而 AI 凭借强大的数据整合分析与模式识别能力，在该领域的风险预

测、影像评估及分子层面识别等方面发挥重要作用，为解决这一跨学科诊疗难题提供关键技术支撑。 

2.1. 风险预测模型 

2.1.1. 传统统计模型 
传统风险预测模型可有效识别特定疾病的高危人群并协助医疗保健提供者采取针对性预防手段降低

发病风险，这类模型目前已在多种疾病的预测与风险评估领域得到广泛应用[15]。在代谢性疾病管理过程

中，依据患者动态血糖水平及生活方式指标等相关临床数据建立的预测模型能够有效评估个体发生 2 型

糖尿病的风险[16]。CKM 综合征风险分层中常用的心血管疾病预测工具多遵循各国指南推荐的总体风险

评估体系，主要包括 SCORE-2D、SCORE-2/OP、汇总队列方程(pooled cohort equations, PCE)、Framingham
及 China-PAR 等，它们通过整合年龄、性别、总胆固醇、收缩压、降压治疗情况、糖尿病病史及吸烟状

况等关键变量实现对个体未来 10 年心血管不良事件发生概率的估算[17]-[19]。 
PREVENT (Predicting risk of cardiovascular disease EVENTs)作为新型 CVD 风险预测模型，较传统评

分方法新增 eGFR 与 UACR 这类反映肾功能及肾损伤的指标并将其作为独立预测因子，进一步优化了长

期心血管风险的个体化量化评估效果[20]。同时，AI 在 CKD 研究领域中有着显著应用潜力，通过整合遗

传标记、生物标志物、合并症、社会经济因素及生物图像等多维度数据并深度分析，识别传统预测模型

难以捕捉的复杂关联特征以构建全面的个体化风险特征图谱，为 CKD 患者提供精准风险评估支持，

Vasquez-Morales 等学者通过构建基于神经网络的预测模型已实现对个体进展为 CKD 风险的科学评估[21] 
[22]。 
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2.1.2. 动态预测模型 
基于机器学习的动态预测模型较传统统计学模型展现出更突出的发展前景与应用潜力，其判别效能

和预测精度普遍优于经典模型且具备参数实时更新能力，能有效捕捉患者健康状况最新动态并为精细化

个体风险评估提供有力支撑，进一步提升临床危险分层与治疗决策的精准性[23]。心血管领域相关研究

[24]显示应用XGBoost模型预测一年内心血管事件发生风险时，受试者工作特征曲线下面积可达到约0.82，
充分体现 AI 技术在多模态数据整合及动态个体化风险预测中的突出优势，为临床风险评估从静态向动

态、从群体向个体的转型提供关键技术支撑。Meng 等人[25]采用 XGBoost 模型对华南地区人群代谢综合

征(Metabolic syndrome, MetS)的相关因素展开分析，结果显示，BMI、年龄和尿酸水平是主要风险因素，

而不可溶性膳食纤维与多种微量营养素则具有保护作用，这有助于临床早期识别 MetS，进而为制定该地

区患者的个性化预防策略提供了重要依据。 

2.2. 影像学评估 

研究证实常规医学影像学检查中的计算机断层扫描和胸部 X 射线可提供糖尿病诊断相关生物标志物

支持[26]。Tallam 等人[27]开发的基于腹部 CT 图像的深度学习预测模型，通过提取胰腺 CT 衰减、内脏

脂肪含量及肝内脂肪沉积等 CT 特征，已成功识别出 2 型糖尿病患者及处于患病风险期的个体，对应受

试者工作特征曲线下面积分别达到 0.85 和 0.81。 
与此同时，AI 技术在超声心动图、心电图、磁共振成像及冠脉 CTA 等心血管影像诊断中展现出重

要的辅助价值，相关研究证实[28]其解读超声心动图时与资深心脏科专家的一致性可达 90%以上且能有

效识别心血管异常。另有研究表明[29]借助 AI 算法对基线心电图(electrocardical, ECG)开展风险分层可精

准识别未来房颤高风险人群。Attia [30]将 AI 技术应用于心电图与超声心动图构建并训练卷积神经网络，

实现对左室功能受损患者的识别同时将常规心电图转化为左心室功能障碍筛查工具，进一步筛选出未来

左室功能下降高风险个体。Betancur 及其团队[31]尝试训练深度学习模型，通过 SPECT 心肌灌注成像预测

未来冠状动脉疾病。Shen 等人[32]开发验证的深度学习算法以面部照片为基础开展冠状动脉疾病筛查，该

算法受试者工作特征曲线下面积达 0.73 且检测准确率为 68%。冠状动脉计算机断层扫描血管造影(coronary 
computed tomography angiography, CCTA)作为评估冠状动脉狭窄的首选非侵入性影像学检查，存在耗时久、

成本高且多依赖半自动或人工判读的问题。Choi 等人[33]应用 AI 算法提升其诊断效率与一致性，实现对血

管形态及狭窄程度的快速精准评估。近年来 AI 技术快速发展推动模型构建方法不断丰富，2025 年 1 月

Hollmann 及其团队[34]在《Nature》提出的表格先验数据拟合网络(tabular prior-data fitted network, TabPFN)
受到广泛关注，该方法通过预先整合先验知识结合贝叶斯推断，能在小样本场景下实现较高预测精度。Zhu
等人[35]将这一前沿技术引入多维小样本临床数据分析，构建 CKM-CHD 优化模型用于冠状动脉狭窄风险

评估。研究结果显示该模型将冠心病中冠状动脉狭窄漏诊率降至 4.9%，为临床决策提供坚实支撑。 

2.3. 分子层面识别 

在分子层面，整合基因组、代谢组、蛋白质组与转录组等多维度数据，有助于系统识别不同病理机制

所驱动的疾病亚群，进而提升个体疾病风险评估的准确性。研究表明，利用机器学习解析多组学相互作用

可鉴定出用于预测心血管疾病风险的转录组与 SNP 特征组合[36]。此外，结合基因组关联分析与表达调控

数据，能够筛选出大量冠心病相关基因位点，揭示疾病亚型的分子异质性，为临床个体化干预提供依据[37]。 

3. 个体化治疗决策支持 

AI 技术能深度整合患者临床特征、生理指标及诊疗数据，准确挖掘药物疗效与安全性的关联信息。
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为用药方案设计与优化治疗提供辅助，从而有效控制不良反应风险。并且 AI 技术还能够强化药物治疗的

个体适配度，改善临床获益水平，从技术上为精准药物治疗提供强有力保障。 

3.1. 药物治疗辅助决策 

AI 技术用于心血管疾病的精准医疗，助推房颤患者抗凝管理方式进步。相关研究证实[38]，这类智

能模型可以根据患者具体情况持续改良抗凝用药方案，帮助临床医生更合理地平衡预防血栓以及避免出

血风险，进一步改善治疗效果，提高安全性。不仅如此，AI 技术也可以辅助医生判断药物停药时间，如

利尿剂或 β受体阻滞剂等，能减少不必要用药，改善患者治疗依从性[39]。 
进行终末期肾病治疗过程中，判断透析是否足够直接关系到患者预后。传统血液检测方式侵入性特

征明显，并且所得结果相对滞后，而目前机器学习可以利用透析机运行产生的流量、压力等连续数据，

实现无创、实时的充分性判断[40]。为了减少治疗过程给患者血流动力学带来的干扰，研究人员融合 AI
开发了可穿戴透析设备，这类设备能持续稳定地清除毒素，并参照实时监测数据动态调节治疗参数[41]。
另外，机器学习模型也可用于改良肾脏移植中的供受体匹配，既可以提高效率，又满足了匹配公平需求

[42]。关于代谢性疾病管理方面，将连续血糖监测数据(continuous glucose monitoring, CGM)与机器学习算

法相结合可以为血糖调控提供有效辅助，并尽快做出准确治疗决策，如治疗方案匹配、调整胰岛素用量

等[39]。KidneyIntelXTM评分等工具也可以作为糖尿病肾病患者的辅助性工具，预测疾病发展情况并为个

体化临床干预提供指导[43]。 

3.2. 数字健康工具 

数字健康技术快速发展让 CKM 综合征管理有了新可能，同时加速疾病防控形式优化升级。尤其是

智能医疗工具以及各种先进的可穿戴设备发挥着积极作用，持续血糖监测系统可以连接远程平台，实

时折射患者血糖变化，帮助医生及时优化和调整治疗方案[39]。不仅如此，智能手环这类设备可以持续

收集心率、活动量以及睡眠等多方面生理信息，依托于数字平台为患者提供科学的健康指导，帮助患

者改变日常行为[44]。智能胰岛素泵可以实现胰岛素的自动准确输注，提高糖尿病合并症患者治疗的精

准度[39]。相关研究表明，增加膳食纤维摄入量有助于帮助 2 型糖尿病患者更好地控制血糖，同时也能

改善胰岛素敏感性[45]。因此，研究人员开发了一款基于 AI 的移动健康干预应用 FiberMore，它通过指

导患者调整膳食纤维摄入，来帮助改善血糖水平[46]。心力衰竭患者使用心脏 MEMS 传感器等专用监

测装置，可以实时预警心功能状态，临床团队参照上述数据进行及时干预，有效减少再入院率，增强整

体管理效果[47]。 

4. 预后评估 

人工智能以及机器学习技术的进步与升级，正逐步改变疾病预后预测的传统模式，促使整合与分析

大规模临床数据及生物标志物的优势性更加明显。以心血管领域为例，通过对数十万名患者的电子健康

记录整合研究，人们已经研发出了深度学习生存预测模型，该模型预测心血管死亡率的能力优于传统评

分系统[48]。同样的，依托于冠状动脉 CT 血管造影训练建立的深度学习模型，可有效实现血管斑块与狭

窄的自动量化分析，这为心肌梗死患者的预后判断提供参考[49]。另外，针对接受导管消融的阵发性房颤

患者，AI-ECG 算法也能对该术后复发风险实行有效预测，继而辅助临床开展个体化治疗以及相应管理工

作[50]。值得注意的是，AI 的预后预测价值不只限于心血管领域，在肾脏病学方面，经过多个人群验证

的肾衰竭风险预测方程，能较为准确地判断患者进展为终末期肾病的可能性[51]。除此之外，依据随机森

林算法建立的糖尿病肾病预后风险评分系统，同样可用于疾病进展预测[43]。此类逐步走向临床应用的模
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型，一方面可有效识别高风险患者，便于及时展开外部干预，也为改良医疗资源配置、增进慢性病长期

管理效能提供准确参考。 

5. 目前挑战 

AI 技术让 CKM 综合征的全程管理有了新突破，有益于该领域发展的科学化、精准化与个性化。这

项技术在风险预测、早期发现、诊断治疗以及预后判断等多个环节发展前景良好，但是在现实应用与推

广阶段依旧面临重重困境。CKM 综合征作为心血管、肾脏、代谢系统交互作用引发的复杂临床综合征，

其诊疗过程具有显著的跨学科、多维度特征，这使得 AI 技术在该领域的应用面临一系列挑战，主要集中

在数据质量、模型可靠性、临床转化、伦理监管等方面。 

5.1. 数据治理的多重瓶颈 

AI 用于 CKM 综合征管理时，数据治理是管理工作的重点部分，直接影响技术实现与否。在 CKM 综

合征的诊疗过程中，我们需要综合观察心血管功能、肾脏状况以及代谢指标等多个方面的信息。但目前

电子健康记录中的数据质量并不理想，普遍存在跨系统信息缺失、记录不一致、术语不统一等问题。例

如，不少心血管疾病患者缺少连续的肾脏微量白蛋白尿数据记录。另外，糖尿病合并高血压患者的靶器

官损伤随访信息也往往存在录入不全或格式不规范。上述问题的存在直接导致数据的可靠性与有效性降

低，进一步影响 AI 模型训练效果，使其难以精准捕捉 CKM 综合征各系统间的病理生理关联，从而弱化

模型对疾病进展预测的稳定性。所以，建立覆盖心血管、肾脏、代谢等多维度指标的高质量整合型临床

数据库是推进 AI 在 CKM 综合征领域应用的首要任务。另外，CKM 综合征相关诊疗记录、医学影像、

基因组数据以及可穿戴设备监测信息等不同维度的数据，大多分散存储在心血管内科、肾内科、内分泌

科等不同科室及不同医疗机构的独立系统，形成彼此隔绝的“数据孤岛”，此类数据格式不一，缺乏统

一操作规范，跨科室、跨机构的数据安全共享机制尚未完善。这种情况下，导致多渠道数据无法实现有

效整合与分析，影响 AI 模型对 CKM 综合征复杂病理机制的进一步研究[52]。此外，CKM 综合征患者的

健康数据涵盖心血管疾病史、肾功能分期、血糖血脂控制情况等诸多隐私内容，极易出现数据安全问题。

严格遵循法律法规，建立包含数据采集、存储、使用到销毁全过程的保护体系，不光是保护患者权益的

必然要求，同样是维持公众对医疗 AI 技术信任的重要基石[39]。 

5.2. 模型的可解释性与泛化性不足 

现阶段，AI 模型在 CKM 综合征临床应用阶段存在的问题主要表现在两个方面：一是可解释性不足，

二是泛化能力较差。复杂深度神经网络的“黑箱”特性，与 CKM 综合征诊疗需兼顾心血管保护、肾脏功

能维持、代谢紊乱纠正的多目标决策需求相矛盾。例如，在临床实践中，当需要在“降低心血管事件风

险”与“延缓肾功能衰退”之间进行利弊权衡时，现有模型在给出建议的同时，往往无法说明其决策依

据，导致医生很难理解与验证模型的推理逻辑。以上问题带来的直接影响在于削弱了模型在 CKM 综合

征诊疗中的可靠性与可信度，阻碍医疗工作者应用 AI 模型[21] [53]。因此，需要尽快研发出具备可追溯

性，且透明度更高的 AI 工具，使其能够清晰阐明在 CKM 综合征诊疗中的决策依据，从而有效提升临床

信任。另外，依据单一机构数据训练的模型容易出现“过拟合”问题。由于不同医疗机构在 CKM 综合征

的诊断标准、治疗方案及患者人群特征上各有不同，例如基层医院与三甲医院收治的患者病情严重程度

存在差异，不同地区人群的代谢特点和遗传背景也不一致，这使得模型在跨机构、跨人群应用时效果大

打折扣。所以，要增进模型在真实繁复的医疗环境里的稳定程度，需要引进数据充分、代表性更强的数

据训练模型，还要借助多中心、大范围的外部数据检验模型适应不同情况的能力。 
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5.3. 临床整合与效果验证滞后 

AI 技术由实验研究转向临床常规应用，现阶段仍受整合困难与有效证据不足双重制约。CKM 综合

征的诊疗需心血管内科、肾内科、内分泌科等多学科协作，而当前多数相关研究还停留在已有数据的回

顾性分析阶段，缺少针对 CKM 多学科诊疗场景设计的随机对照试验及大规模前瞻性研究，所以很难切

实证明该技术在真实临床环境中是否可以切实改善患者生存率、生活质量或医疗成本等重点指标。另外，

现有的 AI 工具与 CKM 多学科临床诊疗流程适配性不足，缺乏统一标准化的整合途径，促使临床应用效

果减弱。为突破这一困境，需着力加强高质量的多中心临床试验，凭借建立动态风险预测平台来实时改

良 CKM 综合征患者个体化干预方案，助推该技术从“理论有效”向“临床实用”转型，真正融入 CKM
的多学科全程管理体系。 

5.4. 伦理与监管不足 

AI 技术在 CKM 综合征领域的快速更新迭代给传统医疗伦理体系与监管框架带来新的考验，相关领

域的伦理约束与监管机制依然有明显欠缺。部分 CKM 综合征相关 AI 模型的训练数据里存在人群代表性

不足等问题，而这种偏差可能被模型放大，关系到对特定群体疾病预测的准确性，甚至致使医疗资源分

配的不公。在临床决策方面，AI 辅助决策失误对 CKM 综合征患者造成不良影响时，医生、开发方与机

构之间的责任划分缺少明确法律依据，亟需建立适配 CKM 诊疗特征的伦理规范与问责标准。另外，现行

传统医疗产品设计的监管方式，无法迎合人工智能软件持续学习、快速更新的节奏。AI 技术在医疗领域

的发展应用，关键是要尽快建立一个高效灵活的监管体系，尽快响应并及时解决技术问题，合理平衡创

新与监管工作。 

6. 局限性 

本综述系统梳理了 AI 技术在 CKM 综合征风险预测、早期诊断、个体化治疗及长期慢病管理中的应

用进展，但仍存在一定局限性。本文未能深入探讨 AI 多模态融合技术对 CKM 综合征各系统间病理生理

的关联机制。经过系统检索相关数据库，结果显示现有相关研究存在明显的领域空白，目前多模态 AI 研
究大多聚焦于单一器官结局预测。部分研究通过整合临床表型与心脏影像学数据预测心力衰竭发生风险，

也有研究联合代谢组学指标与肾功能参数预测终末期肾病进展，但均未针对 CKM“代谢紊乱–肾脏损伤–

心脏病变”的跨系统病理生理关联进行多模态融合机制研究。尽管已有研究证实，多模态技术具备整合

临床、影像、组学等异质性数据的潜力，且基础研究已明确胰岛素抵抗、氧化应激等是介导心肾代谢交

互损伤的核心通路，但目前尚无研究将二者有机结合。未来应着力构建机制驱动的多模态融合研究机制，

将临床表型、影像学特征及多组学数据与病理生理通路结合，推动该领域研究突破单器官结局预测的局

限，迈入跨系统病理机制解析的新阶段。 

7. 展望与总结 

虽然目前 AI 在 CKM 综合征全程管理中面对上述多重考验，但是伴随技术不断发展，在临床实践中

的应用也将逐步深入，其未来发展潜力可观。数字孪生技术有望加深推进，凭借整合多维度数据建立虚

拟患者模型，用来模拟疾病进展，依托于数字方式对各类治疗方案进行评估，帮助临床决策，减少实际

治疗中的试错风险。加速大型语言模型与知识图谱的结合应用，如此有助于提高系统的跨领域推理能力，

尤其是处理一些复杂医学问题。同时可以增强决策透明度，缓解 AI 固有的“黑箱”问题，助推临床信任

建立。另外，人工智能需要更深一步融入严格的临床试验体系，开展围绕 AI 工具的早期临床研究，着重

考查核心指标效用，如患者生活质量、生存率等，继而为技术的成效与安全性积累扎实的循证依据。最
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后，建立医生、患者与人工智能工具协同的管理模式同样不容忽视，这样能增加患者自主管理的参与度，

加强 AI 工具与临床实际需求的适配度，确保诊疗工作精准可靠。 
AI 技术的发展与应用为人类应对 CKM 综合征提供了新的方向和路径，该技术借助整合多维度医疗

数据与分析，从中找到数据的潜在规律，推动 CKM 管理模式从传统的被动治疗转向主动预防。目前实际

应用时依然面对数据质量、算法可靠性、临床转化以及伦理规范等多重考验，需要医学、计算机科学、

伦理学等领域的专家实行跨学科合作。伴随技术瓶颈的突破与跨学科协作的推进，AI 为全球 CKM 综合

征患者带来更加准确有效且公平的健康管理方式，为其创造更多健康福祉。 
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