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Abstract

Unsupervised anomaly detection models often encounter the challenges of ambiguous detection
boundaries and weak generalization ability. Existing deep anomaly detection models, such as Deep
SVDD, although they make the feature distribution of normal patterns more compact through hy-
persphere constraints, are difficult to adapt to irregular feature distributions. Moreover, traditional
detection methods still have deficiencies in precisely modeling “anomalous distributions that closely
adhere to the normal boundary and are highly deceptive”. To address these issues, this paper pro-
poses an anomaly detection model based on adversarial tight wrapping and hypersphere constraints.
This model integrates the ideas of tight wrapping learning, adversarial learning, and deep hypers-
phere constraints, and its game loss function is completely different from that of existing methods.
Specifically, this loss function combines the tight wrapping loss of normal samples, the repulsion loss
of anomalous samples, and the generation loss of adversarial samples, aiming to minimize the differ-
ence between the feature distribution region of known categories and the category feature distribu-
tion region determined by the detection model. Among them, tight wrapping learning helps to make
the detection boundary of the model clearer and more accurate, while adversarial learning enables
the model to learn more robust feature representations. Deep hypersphere constraints increase the
separation between anomalous and normal samples, thereby optimizing the modeling of pattern fea-
ture distributions and enhancing the generalization ability of the model. Experimental results show
that on multiple datasets, the proposed model outperforms many existing anomaly detection models.
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(Support Vector Data Description, SVDD)H1— 2537 ¥ (] & 4/1(One-Class Support Vector Machine, OC-SVM).
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(] B e /N ERAAS R [ 14] 0 1207 VB AR B 175 4 B s e S 380 s R R iR 2 1), AT S BIRT R 2 70 A7 ) 2
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A CREQE ST (CWP) S50 B2 HipLE], SCHLEED ARSI Hok, RS 2KE
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Figure 1. Example diagram of a compact packing point set
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RIRFER R o 35— T R® R PR IMETI, B 7R SRS T4 — MABUR /N B BR R L T A IE R
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[6(x, )~ BIESENER DB — % g U e AR AR I B S, B
FOPRAREA: A MR SRR AR R IEOLMH 0 o, MRS FTE 0  SEFAAIPE )y
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Table 1. The AUROC (%) performance of different algorithms on different datasets
* 1. FRBZEFFHEE LR AUROC (%)1E8E

Method CIFAR10 CIFAR100 MVTec AD DIOR
DeepSVDD 64.8% 67.0% 62.4% 68.5%
Autoencoder 68.1% 69.3% 58.7% 65.4%

OCSVM 66.5% 64.2% 55.1% 62.8%

CSI 94.3% 89.6% 63.6% 78.5%
PANDA 96.2% 94.1% 86.5% 94.3%
MSC (ResNet152) 97.2% 96.4% 87.2% 97.7%
OURS 97.7% 98.2% 88.5% 98.4%

W 2 Fs, (E/MEARBHRET, AT R TP AR, R BIHA BRERE B A = Ror]
BT,
% 3 iz, fE ResNet [36]. EfficientNet [37]. DenseNet [38]F1 ViT DUFhg T-M 2% L, FATHIEAY
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Table 2. Anomaly detection accuracy (average ROC-AUC%) on small datasets
2. HNBIRE LR BRNEE (P ROC-AUCY), RIFHIMASE

Autoencoder MSC

Dataset CSI PANDA  DeepSVDD OCSVM (AE) (ResNet18) OURS
(ﬁ){)lzil;;gs) 86.5 95.8 81.2 75.3 78.9 89.5 98.5
(ZS(I)FS‘:II;;)IISS) 90.1 97.1 84.5 79.8 82.3 92.0 98.1
(SS(I)FS‘:E;)IISS) 81.3 95.4 88.2 83.5 86.1 93.1 96.9
(féfiﬁigﬂg) 84.2 93.1 82.7 77.6 80.5 90.8 97.2
(ggg Sﬁﬁ';lgg) 88.1 95.6 85.6 80.9 83.2 93.8 97.8

Table 3. Performance improvement under different network architectures (CIFAR-10, average ROC-AUC%)
@ 3. TEMEIE R TR RER S (CIFAR-10, F1) ROC-AUC%)

Method ResNet EfficientNet DenseNet ViT

DN2 92.5 89.3 85.6 95.7
PANDA 96.2 95.3 82.4 95.8
MSC 97.2 97.0 95.7 98.6
DeepSVDD 84.5 82.1 80.3 88.2
Autoencoder (AE) 82.3 80.7 78.9 84.1
OURS 98.1 98.7 97.6 98.7
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Figure 2. The influence of hyperparameters on model anomaly detection
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