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Abstract

Violence video recognition is a crucial technology in the field of modern public security. Well-designed
data augmentation methods can improve the precision of violence recognition. To address the prob-
lem that existing data augmentation methods are difficult to fully cover violence information in the
temporal and spatial domains, a Two-stage Collaborative Data Augmentation Network (TCDANet) is
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proposed. In the training phase, a Spatiotemporal Random Crop (STRCrop) strategy is proposed to
generate diverse backgrounds and action representations, which containing violence information in
the spatiotemporal domains, enhancing the model’s robustness in learning spatiotemporal violence
features. In the testing phase, a Cross Area Crop (CACrop) strategy is adopted to expand the cropping
perspective, improving the coverage of violence feature regions. Extensive experiments are conducted
on the VSD2015 dataset. The results of the two-stage collaborative data augmentation network with
only visual modality outperform advanced methods, acquiring leading performance. This study pro-
vides a new solution for data augmentation methods in violence video recognition tasks through the
two-stage collaborative augmentation.
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Figure 1. An overview of TCDANet framework
[ 1. TCDANet 24572 &
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Crop in Space A% /Cor 3 B A2 BEML AL LL r FBH AL B8 55 EL 29 A BEATLIX 3G, 38 A 8 3Tt TE 2 U
Wiy DX (it /N B BE e bl SR I X0 o B 2 AT 10 ORI BRAE R B HE 5 L SR AR I BE L IX S 5 S5 A i
RERS N (H W), TR A=HxW , 81 CUR B ERA A R X . i LS & b AR 25 Rl ik o
ke, FEXTECE R REALRAE 10 M 56 i EL (B CRRFE LU 3 A1 2 50), - A5

AR = f,,(U(In 4R, In 4R, )).i €[0,9] ()

‘min >

Hf AR AR, N AR LRI, U(a,b) 505 [a.b] LRSI, £, () FAEAT A . W4
23 I R T G0 2 SRR SRR/ L I 3 4 BRI B R E 0.75~1.33, X HCRAE I 4 LUAS) th AR o
). BN o BENUVERIEEITR o 7 N (0 FER):

DOI: 10.12677/jisp.2026.151008 92 Kg 5155 kb


https://doi.org/10.12677/jisp.2026.151008

SRR, M

Ai:f;)pt(U(rmin’rmax)XA)’ie[O’g] (3)

AR i 26 T AR 15 Mk ade 98 sy EE T SRR B 58 v, R PR ARG 8 iy 9 R B (1R 3R AR 75 B 5D -
_| JA AR | A
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x=U(0.W-W,,,).»=U(0.H-H,,,) (5)
X=X+ W =+ H,,,, (6)
i = o (%0, 71, 72) (7
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B R BUR IR B R NAK: S =min (H,W) R BB KIET TR X HEA 08 x =W -5)//2,
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Algorithm 1 STRCrop pseudocode

Require: L, TeRV""“ ARe(AR,,.AR,..), 7€ (FuTrar)

min > min " max

Ensure: O e R“/7ex¢
1: function STRCROP(L,LAR,r)

2: 0 =1]
3: if N <L then >Crop in Time
4 E=L-N
5: while £ > 0 do
6: for i = 0 to N-2 do
7: if E > 0 then
8 Linsert(i + 1I[{])
9: E=E-1
10: N=N+1
11: end if
12: end for
13: end while
14: else if N > L then
15: for i = 0 to L - 1do
16: index (i) = {l(Nl)}
L-1
17: end for
18: I = [I[index(?)] | i € 0.. L - 1]
19: end if
20: for each i in I do >Crop in Space >C

rop in Space

21: A

22:

23:

24

R =f, (U(n4R

A,
H, .= .
crop,i [ AR’ J

min >

In 4R, ))

Ai = -fl?pl (U(rmin’rmax)x A)

74

cropi = L\/ 4, 'ARiJ
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25: if W,,,<W and H,,  <H then
26: x=U(o.w-w,,.)
27: N :U(O’H _Hcrop,i)
28: else
29: S = min(W, H)
30: X, = -5
2

H-S
31: = 5
32: end if
33: x2 = x] + I/Vrmp,i
34: YZ :yl+Hcrap,i
35: ic:mep(i’xl’xZ’yl’yZ)
36: O.append(i, )
37: end for
38: return O

39: end function
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B, I REITAM, ST R L

Center-Edge Crop KA B &N (H,w ) WML, BT H 58 w9 (H,, W, ) R DX ORIRR 445 o0 X 3
R BT IA LR XA MRS F o DX B o T 5 mp O S O 8T DUE I Lo (i A T SO 2R XA BE 7)), AP
O ¥ N center _x=(W—-W,)//2 (Wi R B BT O IXSOKF & i 8 x A2 4R), 38 B b0 A A
center _y = (H—HC)// 2 (B R BY A DX 3T B AR B )y ARAR ) o B2 T H O X3 B s A O e,
SRR AR WU T A8 A8HR (0,0)  THEBIX /7 1 # M8 4R (center _ x,0) « JEHBIXIRZE I fi A4
(centerix,H —centeriy) v EM XIS b A AR (0, centeriy) < XA A AR AR
(center_x, cem‘er_y) v L IXIEE AR RR (center_x, center_y) o
BRI 1= (i1, -0, ) BRSPS, 2 — A =4eik i, €308 1, eR™C, Ko H K
WiEG R, wONMIER SR, C NIEIEE(U0 RGB BRI 3 ANEE) . S BT EAR O DX 55
i B P 2 (X 0/ SRR BT T 7 LR WK 7 7, Bl + 0 SEELITIAL 0, Bl
Vogrer + BTG R (%, ) RTHGE KA EFARRR, (w, 1) FORARE K IRE, 4L00J5 1)
AT 1, PR

I = {Ii [xojfset oot TWs Vosser  Vogser T hﬁ] li=1, 2»“':”} (®)
Fep A XIS (w, 1) M (center _x,H. ), TEBRUEESX IR (w, k) 9 (W, center _y) . BJEHI: RRmIR
B T A 108 (AN SRR TE 4 )
BN 5 1B G crop, e 1, 4EE N hxwx C » Flip Crop %14k 8 J5 4 & AT KT B0 S I 45 20 1%
4 flip 1 3 XOA:
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flip I :{JBE. | crop, [, k,1] = crop, [h—l—j,k,l],i:1,2,---,m} )

Hort j e[0,h 1] FRAKTTTMAIFATR D), ke[0,w—1] RoxEEHIT BRG], 1€[0,C-1]FR
WIERG] .

4. R RLER S
4.1. LB

ALK A H MediaEval 2015 B3R AT K AT )R AL 5 347 NAUIGR il 285 55 vSD2015 [32]. — 3%
A 10,900 M B A8 502 AN AT NRIIREA R 10,398 NER ST NIBIREAS . B AT S AR
JIT RS LB 2908 1:20, 2PMBPAPEDIRS . A BEEZ 8L E YouTube PAEL#H
Hollywood Hi5Z, Bf&Ky 8~12 #b. B EEMA v Bl obn icAH B (1 5% D147 NEE AR R JAT bR%s . 2 7)
AT NI SIAT ARG F T 8L 5 B ZR AR SR, WIZRERE 6144 AN B, MASER 4756 M
Bt il 2 BroR R IAT ARSI A AR B 14T A AR

Non-Violence Non-Violence Non-Violence

Figure 2. Examples of the VSD2015 dataset
2.VSD2015 HiREREE

TERTTH 32 20 2 )47 NOARIEE B AT N LB 208 1:20, & TRl NI & 247N
REATR FEAT 55 A FE G D B8 (D047 2 BB R BB VA Fia s o 3 BLA FH 5 77§ 7€ ¥ average precision
(APYHE[S1I1ETFMT 4R bR
4.2. LWHE

ASZIGFET Pytorch 4444, 13T Backbone [50]FIFER Tesla V100 GPU 7 VSD2015 % /14T AR — 732
T4 P EEIATNAEE I AT IG5 1l . IIZRIRERE 30 /> epochs. HEKK/IN 2. MK/ 16+ 1clip,
] AdamW [52]10408% . HIUEESIH N 2e—5. £=(0.9,0.999). KL EFENL 0.01), #EHC LinearLR (7 5 # 2kt
FHit)5 CosineAnnealingLR (J54E 50 & 425%18 K) 157 ) 2R o o Mt BRI B REIOR/S 20 K/ 164
2clips. FEAERIEIEER 715125 K F RandAugment [17]. MultiScaleCrop [ 18]I H CenterCrop [19].
4.3. 5HbFERMEEE

KR AUEN] TCDANet 18 AT MR AME 55 H ERE, 5 HE — SIS e it IR R AT HLAL. Ty
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REfS AN L, RIS IEREAE S 4T MR SR VSD2015 BT S ah R

TCDANet 38 1d 2 B Bt A A SRS 5 v 60 1 B8 04T D915 JE IR IS 2 S e P 3000 22 AR A8 04T ks
EDXIR A e L, IR AN SEHEAR 2 14T s st I RIR . W08 1 s, TCDANet (XSRS 145 R 5
XS T A R LU BUR B AR, B0 UE TCDANet AT 201, 9% AT AR ST 55 R L3 7 18D .

Table 1. Comparison with other methods on the VSD2015 dataset
% 1. #£ VSD2015 B L 5 HAR 5 RMRIEL

T3 Modality VSD2015 (%)
Fudan-Huawei [33] V+A 29.59
Zheng et al. [41] V+A 32.42
Gu et al. [42] V+A 4131
Wu et al. [43] V+A 44.55
Puet al [44] V+A 47.39
TCDANet v 48.89

4.4. jHELSELS

DN VIE T TET P B A B P B T SRS AR 7 i N A B AT NS B URFICR . 2 AR T STRCrop J7
%+ CACrop J7ik LA K 45 5 0 B R PE BE IO RE M, vk =41k i R Se e . DA TRIESEES I 21k,
AR ) SR B

STRCrop A1 CACrop ¥t X $2 T+ ot It 24 B8 347 915 B AN R T S tH (K 73k o o e 2 3 4 )5
RIS 4E A7 ), STRCrop 8 5i i RIS I = 3 ) 2% 147 37 SISV E R IK 1“4 21 i€ /1. CACrop #cBY
s RIS IX SR, 38 5 MR BT BT 28 AT R AR X 2 B . Wk 2 o, IR S BT A
Bl 0G5 iR ROR . ATE I B R AT S R R, IR 22 S w2 47 . Rl
YRR R EEY, BB AT OVRHE RN, SR RBRAIRSZ . B8IE STRCrop 55 CACrop 4ty
X AE BE AR TH T2 BB R R

Table 2. Ablation evaluation of proposed methods on VSD2015 dataset
% 2. 7E VSD2015 $IREE L1275 R A ERITAG

Fik VSD2015 (%)
STRCrop 47.31
CACrop 47.40
STRCrop + CACrop 48.89

45. SEERENLE

JEIt STRCrop XA ALURE FEH& T+ 475 A RIS UE R T BEME o I BRI SR ME 7772 RandAugment [17]
A1 MultiScaleCrop [18]ff bt o Jm sk Il ZRic o] FHERR &5 SR EEAVPAL U ZhBh Bt e 19 STRCrop J5ik. Ik
N [RTRR 488 A [7) 77 226 A0 [E U1 2508 S B~ 3 DI 2Rt TR) o BRAS 21 o O fSsRER A1, SRie ik B IR — 2.
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Wi 3 Frow, 1EAHTE S5 264 STRCrop 45 5448 T- RandAugment [17]F1 MultiScaleCrop [18], 1iF
B e 2 Bl ML BY SR A B & L5 2 04T A B I A I s s, R A PR TR A I R AT I
e )IAES, $RTHEANZALRE J1. STRCrop 39X B Sk 4 R s A, THREE 210 RAGEE, SEOIZ
N B 3G 0 o B &5 ANV 2RI 8] ) 25 B R IUE B STRCrop Wil & 31

Table 3. Comparison with training benchmark methods on VSD2015 dataset
% 3. 7£ VSD2015 HiE Sk £ SIIGE AL

WIRES IR R348 VSD2015(%)
RandAugment [17] 15.79 46.18
MultiScaleCrop [18] 15.28 46.89
STRCrop 25.28 4731

30 3 R R SR AN N 2 A 36 4IF CACrop 1 CACrop + STRCrop HU& FEIE, MR HEE 7% Center-
Crop [1911E bbAst e W [a] 2 I i B AE AR 1)~ S50 B 1), BP0 — 0 Ak B T F I P4 A U AR A (1) P 38 1B
). ARSI A TE, SRS — M SEe s B AT

W% 4 Frzn, CACrop 17 CenterCrop [19] “AVERAEHC” BIJRPRYE, bl IS S5 R AUk B 6 2%
DT RFHEE S RE IR T A4 “ ol e 877 J5i%. CACrop+STRCrop LK E AL, Lt CACrop [
BORFELF, TR R SRR RS 5 o CACrop §7 KRB A, BN AL BR AR O XS T, KLk
CenterCrop . STRCrop + CACrop i#id STRCrop 1 it 218 /147 s B s 2 Revt:, IRTHEALG)
T IT N EREE 26607, ALK [AAG RKS20H . ii STRCrop + CACrop Fi1 CACrop F#EEE S [A] AH
ZEEL. MR AN K TP B R 4 P47, 1EBH CACrop A1l STRCrop + CACrop & B 1T

Table 4. Comparison with testing benchmark methods on VSD2015 dataset
4. 7£ VSD2015 HiE Sk £ S E T AL

Jrik DR R (D) VSD2015 (%)
CenterCrop [19] 0.11 46.18
CACrop 0.72 47.40
STRCrop + CACrop 0.72 48.89

4.6. LER T

NEM LI TCDANet 7£5 /AT AMBHRIAAE S 150 2K PEBE, AT X L TCDANet 5 5 A 7Y
T P S TR U 5 SR AT P A E AT o TR R P (4T AR LS 2809 (Non-Violence JydE% 11474,
Violence NE AT ), FURETMZIA], FEFETCE IR B BT, A7 O € 2% FH - e by A=
H SR R R (TR, B ) .

e 3 M AE VSD2015 #uddk b 18 AT AR B 55 A A AE— € OBk, FTRE H1 284
PN AT R M 2 R . B2 RN AT N TB st 5t 5), BN 2 AT
ISR O 7> SRAFAE —SEXEE . TCDANet S B VERCHR IG5, SR Il ZRimS (& 2 AT 015 B 2
SRR 22 FEPEAT I A (¥ 28 AT AR AE X B0 75 B2 . 7EUIIZRI BL STRCrop iERA 2 5 3 5 7147 MAT RHE
AR 2 F Bt 25 e AERNRET BE CACrop # /5% J14T AT 9 R SR RFAE (AP R A i SR IR 3 2 [X 4 A
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Figure 3. Confusion matrix comparison of different methods on VSD2015 dataset
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