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Abstract

Blind image deblurring aims to recover sharp images from blurred observations without relying on
any prior knowledge of the blur kernel. Unlike deep learning methods that depend on large-scale
data training, this problem is inherently a few-shot inverse problem. Its core challenge lies in effec-
tively estimating the unknown blur kernel from a single image or limited samples, rather than learn-
ing the mapping relationship between blurred and sharp images through massive training data.
Based on the observation that convolution operations reduce the high-frequency sparsity of images,
this paper proposes a novel adaptive frequency-domain enhancement regularization prior for blur
kernel estimation (Adaptive Frequency-Domain Tuning for Sparse-Based Prior, AFTS). This prior
effectively captures the degradation law of high-frequency features during image blurring through
adaptive frequency-domain enhancement and a nonlinear activation mechanism. We embed the AFTS
prior into the maximum a posteriori (MAP) estimation framework, construct a joint optimization
model for sharp images and blur kernels, and adopt the half-quadratic splitting (HQS) and coordinate
descent strategies to achieve efficient solutions. Experiments on multiple standard datasets demon-
strate that the proposed method achieves performance comparable to state-of-the-art blind deblur-
ring algorithms in objective metrics such as PSNR and SSIM, while exhibiting significant advantages
in computational efficiency. It provides a feasible solution for high-efficiency image restoration in
future applications.
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Figure 1. Threshold determination graph
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Figure 2. The average LO norm of clear and blurred images after AFTS processing; 2. The average L1 norm of clear and
blurred images after AFTS processing; 3. The difference in LO norms between clear images and blurred images; 4. The differ-
ence in L1 norms between clear images and blurred images
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Figure 3. The variations of the L0 norm and L1 norm when the AFTS operation is applied to blurred images and their corre-
sponding clear images
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Table 1. Blind deconvolution is a pseudo-code used for blurring images and kernel restoration
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Algorithm 1: Pseudocode of Blind Deconvolution Algorithm for Blurry Image and Kernel Restoration

10
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12
13
14

15

Input: 7/, B (Image,Blurry)

k «initialised from coarse resolution

scale < computed according to k

for » < 0 to max_scale do

B_downsample «— downsample(/B,scale)

for j — 0 to max_iter do
I « solution of Equation (6)
k < solution of Equation (5)
k < remove isolated noise (k)
k < adjust_psf center(k)

end

k < estimate_psf(k, scale)

scale « scale + 1
end
return /, k

Output: / (Latent Image (Intermediate)),
k (Blurry Kernel)
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Table 2. Joint optimization and post-processing pseudocode based on intermediate latent images and fuzzy kernels
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Algorithm 2: Pseudocode of Non-blind Deconvolution Algorithm

1. Input: / (Intermediate Latent Image), K (Intermediate Blur Kernel)
2. Output: / result
3. 1
4. for i from 0 to num_channels - 1 do
5. Ic « laplacian_prior_estimation(l, i)
6. 11 « concatenate(I1, Ic)
7. end for
8. 12 «— solution_for / using_equation(/, K)
9. diff « 71-12
10. filtered_diff — bilateral filter(diff)
11. 1 result < 11 - filtered_diff
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MBEA T —, RET9] [13] 2515 H M7, X388 T AFTS Jalsnt mip i 8 (b pn e ks vl
P FESSH— S SSIM f845 b, BRAKT[26], & T (2515 LUk, W HAE G S5 2 5 E I Re
BE7E R 22 LR RGBSR, (il “BEREM + 5B FIWH D505 O Fens, (R T &
KRG JEE, R REARNER R

TERBE MR 7T, H 7.73 B P4 (], AbFHush. Lh[25)1HulE 14 5. BCRETHER T
AFTS Sei MR fai A v 5 B 2 — ik oy R 5 Ak b T BRI s RICR AR, J6 GPU s B R T 4% S8 7V E R
REEZ ) ITEE AR B A, S0 “RikE fE + W S, s 4R A s B R U OGS,
PSNR. SSIM JHfEERM [A)%] Eh 45 B R Han A kRt =, 453 0% 3.

Table 3. Comparative analysis of the dataset by Levin ef al.

% 3. Levin F AR BUIRELLB T

PSNR SSIM AR ST 534 BN [R] (F)
Pan et al. [25] 27.5400 0.8626 1.2076 109.6088
Pan et al. [26] 28.3800 0.9250 0.8776 15.0949
Wen et al. [13] 26.1235 0.8364 1.4800 18.6100
Chen et al. [9] 26.4869 0.8515 1.0123 65.2000
Radi et al. [1] 28.3400 0.8870 1.7800 8.0570
Ours 28.5136 0.8933 1.1408 7.7300

I THBOIAZ 5 ST o RIS IR S T R 45 R R 2 LR IR R A
WA 4 fioR, ARSCER RERZE TSR i 2R 702 22 LBV X Bl b, APt T 1, iIXRUITEL
KEBIEN T, A ITERRZE EFKT Pan et al. [25] Wen et al. [13)25XF L7, RIS HIRE 15
e

SIGEE R WA 4 Fror 5268, ASCOOTEIEIBITEIE BRI TIER AT, (1) 7E 255 x 255 4
HEE N, Panetal [25]7% 109.609 #2. Chen et al. [9]7 65.2 ¥+ Panetal [26]75 15.095 #». Wenetal. [13]
5 18.61 ¥, MASITIERR 7.73 70, FERMIK T HARMYSEEE: (2) /0 PRI 2 800 x 800, HAhKH %
FEIT KU, Pan er al. [2513% 1550.932 #b. Chen et al. [91i% 755.43 FF, ACT7ELL 45.0578 Fh R K5
s 3) M@t SRR M AR e KRG, HAREIVERE BIUG  HE 3 3271, HEFRRT (7] 2 24880 K,
Pan et al. [25] M\ 255 = 255 F| 1024 x 800 73 ## %, FERIGKHE 20 %, Chen er al. [9PEKHM 12 fF, AL
TIERERT BE KAV 6.2 %, AR o

5.3. ARHLER

ANIETR T AR ST IRAER A AR A U B B BRI RRCR, 15 2o 08 BHR A0 504
BEAT TXSEG, WP 5 Fo. SRR, ARSI ORas G5 A 4017 55 40 0 i W P2 T 420 B i 1 S 4
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Figure 4. In the reasoning time comparison experiment, the error ratio was accumulated. To simultaneously demonstrate the
dual advantages of this method in terms of quality and efficiency, we compared the method proposed in this paper with [25]
and [26] based on three datasets with different resolutions: Levin [17], Kohler [16], and Sun [27]

4. IRELERZVHEHIENEX LI T, AT RERHERATEAEREMYR LPNERSE, RNETRIS=
METRRE S HRFEIEEE Levin [17]. Kohler [16]5 Sun [27], A FTES([25]F[26]#1THLER

Table 4. The reasoning time of algorithms for images of different dimensions

4. TR EEGBBAHEIER ]

‘ HEWTIRT 1) (F)
=R 5
255 x 255 800 x 800 1024 x 800

Pan et al. [25] 109.609 1550.932 2280.716
Pan et al. [26] 15.095 210.981 269.872
Wen et al. [13] 18.61 54.416 66.134
Chen et al. [9] 65.2 755.43 794.186

Ours 7.73 45.0578 55.72
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(ZES S

Figure 5. The results of our blind image deblurring algorithm, compared with those of other state-of-the-art algorithms. From
left to right: 1) Input the blurred image, followed by 2) the result of Chen et al. [9], 3) the result of Wen et al. [13], 4) the result
of Pan et al. [25], 5) the result of Pan et al. [26], and 6) the result of our algorithm

5. RANMNEEWESENGER, SHEHEEREL . NERA: 1) BANEWEIG, BEEARA 2) Chen FA[9]HY
£ER, 3) Wen FA[I3IMLER, 4) Pan FAS]HILER, 5) Pan FA26]MLER, LUK 6) HITMEELER

5.4. &5ig

AR REE FUG LB A8, $2HAS AFTS SE36 R 2 JE AR ——iZ i OB e R T %
AR BB ” e, e A0 1 3 S 1 SR (e S 2 AR R AIE TR TSR 7 1 o 2 1 B R HE %)
BRI AR HR SR IE RS B R4, SR BORIAZ AN TR, AR AR Se a0 ) 5 2R ORI 3% SOE B AS 2 1 1)
M, FEUET B, BRI AFTS 630 AN MAP HEZE, 4542 R0 558 B Al Ak S ms Sl i i
BEBRZ B G HERE Km0 AR “BERER + EFEREHR” WP, mrEvbiizs
BUg, Ja @ SuL g IR s, FWOR i fs e 5 =2 i & .

AR EETTER: B0, AR —FOEH T B3 BUE MM B R e 50 . %) “ B S FRK
BIGMBLE” 1AL S8 BRI G, BBt E 7, A %X B0 -5 i i 5 = 5
FHIE, ABMIRZATHEE SR 0, HOR, RSO 7 —Fin R T e 2R, B E,
TR I RN B AR KA, SR AR T BRE A B RAGTE W EUE 1 SO £, IRk IR R
AFRAE M RAL IR, SREBUK AR M S HERE &G, AT IRV R, A SCE SRR R S
ANTFRMERAR AR B AT TR ERAE . IOUE I SRR A5 AR, PR T IR TE W AR ZE LR R AR AL T
FFT-ReLU i it S 3o A 28 45 HH R B, EL AR B ok B LU R R FE 2% ) 7 AR 1.8~2.3 %, mli 2 & &%
138 73 K
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5.5. XFEIIE

AR TR TR =I5 — R A AT IR R B IR A ST HE S, Gt e 2 I 5 2 5] BRI %
PR UG RE AR ST S5 R k375, USR5 R RS . Bheth, e R &5
S TURAE AFTS SRt S, Sxh A e 5 L SN S BUE AL SRS, ST 5
WM —REa RGBS CRGTHSIRZRE, i RERE MY 5z LR

EEWHE
KHFH T RFERFAECH NN G- R H (9 H 4’5 : 202510186012).
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