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摘  要 

盲图像去模糊旨在从模糊观测中恢复清晰图像，且不依赖任何模糊核先验知识。与依赖大规模数据训练

的深度学习方法不同，该问题本质上属于小样本逆问题，其核心挑战在于如何从单幅图像或有限样本中有

效估计未知的模糊核，而非通过大量训练数据学习模糊与清晰映射关系。本文基于卷积操作会降低图像高

频稀疏性这一观测，提出一种面向模糊核估计的新型频域自适应增强正则化先验(Adaptive Frequency-
Domain Tuning for Sparse-Based Prior, AFTS)。该先验通过频域自适应增强与非线性激活机制，有效

捕捉图像模糊过程中的高频特征退化规律。我们将AFTS先验嵌入最大后验概率估计框架，构建了清晰图

像与模糊核的联合优化模型，并采用半二次分裂与坐标下降策略实现高效求解。在多个标准数据集上的

实验表明，本方法在PSNR、SSIM等客观指标上与主流盲去模糊算法性能相当，且在计算效率方面具备明

显优势，为以后高效图像的复原提供了可行解决方案。 
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Abstract 
Blind image deblurring aims to recover sharp images from blurred observations without relying on 
any prior knowledge of the blur kernel. Unlike deep learning methods that depend on large-scale 
data training, this problem is inherently a few-shot inverse problem. Its core challenge lies in effec-
tively estimating the unknown blur kernel from a single image or limited samples, rather than learn-
ing the mapping relationship between blurred and sharp images through massive training data. 
Based on the observation that convolution operations reduce the high-frequency sparsity of images, 
this paper proposes a novel adaptive frequency-domain enhancement regularization prior for blur 
kernel estimation (Adaptive Frequency-Domain Tuning for Sparse-Based Prior, AFTS). This prior 
effectively captures the degradation law of high-frequency features during image blurring through 
adaptive frequency-domain enhancement and a nonlinear activation mechanism. We embed the AFTS 
prior into the maximum a posteriori (MAP) estimation framework, construct a joint optimization 
model for sharp images and blur kernels, and adopt the half-quadratic splitting (HQS) and coordinate 
descent strategies to achieve efficient solutions. Experiments on multiple standard datasets demon-
strate that the proposed method achieves performance comparable to state-of-the-art blind deblur-
ring algorithms in objective metrics such as PSNR and SSIM, while exhibiting significant advantages 
in computational efficiency. It provides a feasible solution for high-efficiency image restoration in 
future applications. 
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1. 引言 

图像处理技术是现代公共事业决策的关键支撑，既是实时分析、异常识别的核心依据，也是事后追

溯的重要证据。但现实场景中，恶劣天气、目标移动、镜头污染及硬件限制等易导致图像模糊，且模糊

原因多样、模糊核难以预知。为此，本文提出无模糊核依赖的盲去模糊算法，无需模糊类型、强度、核尺

寸等先验信息，可从单幅模糊图像中同步恢复清晰 latent 图像与未知模糊核，其数学模型描述为： 

B I k η= ⊗ +                                     (1) 

其中，B 表示输入模糊的彩色图像， I 表示原始的清晰图像，⊗为二维卷积运算，k 表示模糊核，η为成

像过程中引入的高斯噪声或椒盐噪声[1]。 
近年来，遥感图像富含的复杂纹理信息为盲去模糊模型优化提供了关键支撑，基于先验约束的改进

方法成为该领域的核心探索方向，这些方法通过不同维度的约束为图像复原提供了基础，为本文提出的

“AFTS 频域自适应增强正则化先验”的思想提供了借鉴。L0 正则化先验[2]核心是通过约束图像梯度的

稀疏性保留强边缘信息，以此抑制模糊导致的细节丢失，其“稀疏性约束”的核心思路被本文继承。局

部二值模式先验[3]通过编码图像局部纹理特征实现模糊与清晰区域的区分，在遥感复杂背景下提升了纹

理恢复质量，本文方法同样以“纹理区分”为目标，结合相位谱缩放进一步增强特征鲁棒性，更适配遥

感多目标重叠场景的需求。潜在结构先验[4]利用图像几何表面积最小化的特性约束恢复图像的结构平滑

Open Access

https://doi.org/10.12677/jisp.2026.151007
http://creativecommons.org/licenses/by/4.0/


杨茗惠 等 
 

 

DOI: 10.12677/jisp.2026.151007 77 图像与信号处理 
 

性，避免去模糊过程中的结构失真，本文算法通过 AFTS 先验的频域特征稳定化处理，进一步强化了结

构约束的可靠性。 
在现有先验的改进探索中，曹等人[5]将暗通道先验与卷积模型结合，借助暗通道的稀疏性特征为遥

感纹理密集区域的模糊核估计提供有效约束，本文 AFTS 先验的“频域稀疏性筛选”思路与此一脉相承，

且针对暗通道的性能短板，通过类似的方式提升了低差异区域的细节约束能力。Mammei 等[6]通过暗通

道先验与双边滤波的融合，平衡了细节恢复与纹理保护，减少了平滑操作带来的纹理丢失，本文通过 AFTS
先验的 ReLU 非线性增强与特征放大，在频域直接强化高频纹理成分，实现了类似的效果，且有效提升

了推理效率。Lim 等人[7]针对纹理损失问题，融合梯度图像与纹理图像的 L 范数先验，强化对图像纹理

结构的保护，本文 AFTS 先验整合了频域梯度与幅度特征，更全面地捕捉了遥感纹理的频域退化规律，

其约束维度更贴合遥感图像的纹理分布特性，避免了单一维度约束导致的纹理失真。Song 等人[8]将无参

考图像质量评估特征融入去模糊模型，有效增强了模型的泛化能力，适配不同遥感模糊场景，本文方法

的“由粗至精多尺度框架”与 AFTS 先验的自适应阈值设计，延续了这一泛化性优化思路，优化了现有

方法对遥感多场景、多模糊类型的适配不足的问题。 
现有遥感图像去模糊方法普遍存在若干共性局限：首先，对频域中纹理的退化规律捕捉不足，导致

复杂纹理恢复精度有限；其次，对高噪声、低分辨率场景的鲁棒性较弱，传统空间域先验易受噪声干扰

而失效；最后，计算效率与细节约束难以平衡，处理大尺寸图像时耗时显著，使其在多云雾、多目标重

叠等复杂场景中难以拟合真实物理环境，去模糊效果欠佳。针对上述问题，本文在兼顾恢复精度与推理

效率的前提下，于 FFT-ReLU 稀疏先验模型[1]基础上进行改进。该模型通过“FFT-ReLU-逆 FFT”的频

域-空间域转换操作，利用稀疏性差异实现清晰化，但其运行效率仍有提升空间。为此，本文提出一种卷

积稀疏性增强新先验，旨在强化图像边缘高频信息与模糊核之间的关联特性，从而提升算法效率。同时，

延续“盲反卷积 + 非盲反卷积”的两步架构，在优化去模糊质量的同时保持较低的计算复杂度，以满足

监控、交通识别等实时处理场景的需求。 

2. 相关工作 

基于先验约束的图像盲去模糊方法主要建立在最大后验估计(MAP)框架之上，其核心是通过引入先

验模型约束，在联合估计清晰图像与模糊核的过程中提升细节恢复质量与核估计精度。现有研究按其建

模思路可归纳为以下三类：梯度与稀疏先验、通道与几何约束先验、结构与鲁棒优化方法。 
在梯度与稀疏先验方向，研究主要通过建模图像梯度或稀疏特征来保持边缘与纹理结构。Lim 等人[7]

提出的 L0 梯度先验能有效保留强边缘，显著减轻传统平滑方法导致的细节损失。Chen 等人[9]基于局部

最大梯度先验的方法，通过编码局部纹理差异提升了模糊与清晰区域的区分能力。Levin 等人[10]将梯度

统计特性引入 MAP 框架，通过交替更新实现高质量联合估计。此类方法在计算效率和边缘恢复方面表现

突出，但面对复杂纹理或低对比度场景时易出现过度平滑。 
通道与几何约束的引入增强了模型对复杂场景的适应性。Chen 等人[9]提出的非线性通道先验揭示

了清晰图像在暗亮通道比上的非线性稀疏特性，提升了高噪声环境下的鲁棒性。Yan 等人[11]通过极坐

标通道先验，弥补了暗通道方法在低像素多样性场景中的不足，实现了对低差异区域的细节增强。Liu 等

人[12]提出的表面感知先验从几何角度出发，基于潜在清晰图像表面积更小的假设，在平滑性与细节恢复

间取得了平衡。此类方法在复杂条件下稳定性较强，但模型复杂度高，对参数敏感。 
为提高优化稳定性与噪声鲁棒性，部分研究从结构约束与鲁棒优化角度改进了传统 MAP 框架。Wen

等人[13]提出的局部最小化先验兼顾效率与质量，通过约束局部极值实现快速收敛。Ge 等人[14]将曲率约

束与梯度先验结合，强化了对结构边缘的保持能力。Chen 等人[15]设计了异常值检测与剔除机制，提升
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了算法在噪声等扰动下的稳健性。该类方法在真实场景中展现出较高的恢复质量与稳定性。 
综上所述，现有方法虽各有进展，但在多场景适配性、核估计精度及噪声鲁棒性方面仍存不足。因

此，本文在 MAP 框架下，针对上述问题，提出一种结合局部最大高频系数先验与图正则约束的盲去模糊

方法，以实现对图像的高效精确复原。 

3. 先验设计 

在本节中，我们讨论了应用 Radon 傅里叶变换操作的稀疏性特性，并开发了 AFTS 稀疏性先验，以

构建一个目标函数，从而估计潜在的清晰图像和模糊核。 

3.1. 稀疏性 

首先为了介绍我们的工作，我们讨论卷积对图像稀疏性的影响。在标准的去模糊模型中，模糊图像

表示为清晰图像与模糊核的卷积。本质上，可以表示为： 

( ) ( ) ( )
1 1

0 0
, , ,

− −

= =

= + + ⋅∑∑
k k

i j
x y IB x i y j K i j                              (2) 

这里，( ),x y 表示像素位置，模糊核 K 的大小为 k k× 。I 和 B 分别表示清晰图像和模糊图像。由于卷

积的输出本质上是输入的局部加权线性组合，因此它比输入的稀疏度更低，意味着它具有更多的非零元

素，因此，与相应的清晰图像相比，模糊图像中亮度非常低的像素较少，即具有更多的非零元素。 

3.2. AFTS 

本文引入了一种频域自适应增强正则化的先验(Adaptive Frequency-Domain Tuning for Sparse-Based 
Prior)，特别关注于频域特征的智能增强与稳定化处理，缩写为 AFTS 先验。AFTS 先验基于一个核心思

想：对输入张量进行傅里叶变换后在频域中进行操作，比直接在空间域中操作能更有效地捕捉和增强图

像的某些重要特征。AFTS 定义为对图像进行以下操作的函数： 
1) 对输入模糊图像的 FFT (快速傅里叶变换)。 
2) 计算频率幅度，只保留显著频率特征，增强重要信息的显著性，调整阈值计算模糊图像与清晰图

像的 L0 范数，最终得到的最佳阈值为 0.1。实验表明，该阈值可以有效过滤掉弱频率成分。 
 

 
Figure 1. Threshold determination graph 
图 1. 阈值确定图 
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本节使用 Kohler [16]等人的数据集进行阈值确定，由图 1 阈值小于 0.1 时模糊图像与清晰图像的 L0
范数差异均值不够明显；阈值大于 0.1 时差异开始恶化，阈值为 0.1 时为最佳差异。阈值为 0.1 时，稀疏

性比率稳定在 8:1，阈值大于 0.1 时，模糊图像的 L0 范数开始不必要地增加，阈值小于 0.1 时，虽然结果

相似，但可能保留过多噪声。0.1 提供了足够的阈值来滤除噪声，同时保留重要频率成分。 
3) 对其相位谱施加一个微小的固定缩放，提升特征的鲁棒性。 
4) 对保留的频率分量应用 ReLU 并放大 1.2 倍，ReLU 引入非线性，增强重要频率特征的对比度，

1.2 倍放大进一步强化显著频率成分的贡献。 
 

  

  
Figure 2. The average L0 norm of clear and blurred images after AFTS processing; 2. The average L1 norm of clear and 
blurred images after AFTS processing; 3. The difference in L0 norms between clear images and blurred images; 4. The differ-
ence in L1 norms between clear images and blurred images 
图 2. 清晰、模糊图像经过 AFTS 处理后的 L0 范数平均值；2. 清晰、模糊图像经过 AFTS 处理后的 L1 范数平均值；

3. 清晰图像与模糊图像的 L0 范数差异；4. 清晰图像与模糊图像的 L1 范数差异 

 
从图 2 可以清晰看出，在 amplification = 1.2 时，清晰图像与模糊图像的 L0 范数差异达到最大负值。

L0 范数衡量的是频率成分的稀疏性，差异值越负表明清晰图像相比模糊图像保留了更多有效的频率成

分，同时抑制了噪声成分。说明 1.2 这个参数值能够最大程度地增强图像的重要频率特征，提升图像的锐

度和清晰度表现；L1 范数差异图，在 1.2 处也呈现出较好的区分效果。 
虽然有些指标随 amplification 增大而单调变化，但关键的判别指标即清晰与模糊图像的特征差异在

1.2 时达到最优平衡。这个值既避免了过小的放大导致的特征提取不足，也防止了过大放大带来的噪声增

强问题，在保持频率稀疏性的同时实现了最佳的图像质量提升效果。 
5) 从上述结果中减去原始图像的一半，用数学公式表示，AFTS 可以描述为： 

( ) ( )( )( )1
0.1PAFTS 1.2 ReLU 1 0.5−

>= ⋅ ⋅ − ⋅MI I I                       (3) 

我们对来自不同数据集的图像进行 AFTS 处理，包含 Kohler [16]、Levin [17]等人提供的一个数据集，
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图 3 展示了当 AFTS 操作应用于模糊图像和其对应的清晰图像时 L0 范数和 L1 范数的变化情况。图中显

示了经过 AFTS 处理后，模糊图像的稀疏性降低。 
 

  

  
Figure 3. The variations of the L0 norm and L1 norm when the AFTS operation is applied to blurred images and their corre-
sponding clear images 
图 3. AFTS 操作应用于模糊图像和其对应的清晰图像时 L0 范数和 L1 范数的变化情况 
 

通过应用这一操作，可以发现关于模糊模式的可靠信息，我们观察到，对清晰图像应用 AFTS 会导

致比其模糊图像有更少的非零元素，因为这些非零结果表明了模糊的存在，这为我们提供一个机会。通

过惩罚 AFTS 的非零结果来检测模糊，我们发现，清晰图像与模糊图像经过 AFTS 处理后，模糊图像的

L0 范数与 L1 范数始终高于其对应的清晰图像的 L0 范数与 L1 范数。利用这一特性，我们将其纳入优化

模型当中，得到了一个非常高效的算法。 

4. 算法理论 

盲去卷积与非盲去卷积是图像复原中的两类核心问题，其根本区别在于对模糊核的认知程度。非盲

去卷积假定模糊核已知，其任务是在给定模糊核 k 和模糊图像 B 的条件下恢复清晰图像 I，是一个约束较

良态的问题。标准的图像去模糊公式是： 
2 2
2 2 0,

min α β⊗ − + + ∇
I k

I K B k I                              (4) 

而盲去卷积则更为病态，需从单幅模糊图像 B 中联合估计清晰图像 I 与未知模糊核 k，因此必须依赖

更强的先验约束来求得物理合理的解。本文引进了一种新先验 AFTS，在未知模糊核的情况下，能够更稳

定、准确地同时估计出清晰图像和模糊核，新的去模糊公式如下： 

( )2 2
2 2 0 0,

min AFTSα β λ⊗ − + + ∇ +
I k

I K B k I I                       (5) 

我们第一项确保给定的模糊图像与估计的潜在图像和模糊核的卷积尽可能相似。第二项对核进行正则
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化。第三项保留较大的梯度并丢弃较小的梯度[18] [19]。第四项为新引入的先验。α 、 β 和λ 是惩罚参数。 

我们分别使用坐标下降法交替求解 I 和 k，算法可以分为盲去卷积和非盲去卷积两个部分。在盲去卷

积中，使用先验知识或启发式方法，在没有准确点扩散函数(PSF)的情况下计算潜在图像和模糊核。非盲

去卷积则用于去除由盲去卷积过程中可能出现的振铃伪影。 

4.1. 盲去卷积 

盲去卷积是在完全未知点扩散函数的前提下，仅依赖输入的模糊图像 B，联合估计出潜在清晰图像 I
以及模糊核 k。这是一个典型的病态逆问题，若没有合适的先验约束，其解通常并不唯一，也容易产生过

拟合或伪影。因此，我们在优化模型中引入了改进的 AFTS 先验，使问题得到更为稳定和高效的求解，

盲反卷积的伪代码见表 1。 
I 的估计：目标函数中式(5)包含非线性的 AFTS 算子和 L0 范数正则项，直接优化求解比较困难。为

此，我们采用半二次分裂优化策略[20]来处理非凸的 L0 最小化问题。具体地，引入与图像空间梯度 I∇ 相

对应的辅助变量 ( ),x yg g g= ，并为 AFER(I)引入辅助变量 h，将原问题转化为： 

( ) 22 2
1 12 2 0 02, ,

min AFTSγ β µ λ⊗ − + ∇ − + − + +
I h g

I k B I g I h g h                  (6) 

其中，g 与 h 为辅助变量，用于近似图像梯度 I∇ ，简化 L0 的优化； γ 是惩罚参数，用于控制 I∇ 与 g 的

一致性； µ 是惩罚参数，控制梯度 g 的稀疏性； 1β 与 1λ 是稀疏性参数，分别用于控制图像梯度 I∇ 与

AFTS(I)的稀疏性。该问题可通过交替优化每个变量求解。为了在算法中实现清晰图像估计，接下来我们

将问题转换至频域，并推导出关于 I、h 和 g 的闭式解。 
值得注意的是，由于 AFTS(I)本身具有非线性与复数特性，直接求解困难。为此，本文借助线性算子

AF 对其进行近似，即在向量形式下满足 ( ) ( )AFTSAF I I≈ 。算子 F 的学习通过基于 Adam 的梯度下降实

现，并在实际实验中表现出较快的收敛性。在多个不同类型的数据集(TextOCR, LOL, LFW)上测试结果表

明，该近似过程通常在 100 步迭代以内即可稳定收敛，并能较好地保留 AFTS 先验的稀疏性特征。 
因此，潜在图像的优化问题可进一步转化为： 

( ) 22 2
122 2

min γ β− + ∇ − + −kI
T I B I g AF I h                          (7) 

其中， kT 是由模糊核 k 构成的 Toeplitz 矩阵；AF 是线性算子，近似 AFTS 操作；其余的参数与半二次分

裂形式的公式相同。使用快速傅里叶变换实现高效乘积[11]。该问题具有闭式解： 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 γ β

γ β
−
 + ∇ +
 =
 + ∇ ∇ + 

K B g AF h
I

K K AF AF

     


     
                 (8) 

对于辅助变量 h 和 g，其更新规则可通过逐元素优化得到： 

( ) 2
1 1 02

min AFTSβ λ− +
h

I h h                               (9) 

和 
2
2 0min γ µ∇ − +

g
I g g                                 (10) 

以上两个分解的问题都可以通过逐点最小化的方式求解，其中 h 和 g 的更新规则为： 

( ) ( ) 2
AFTS ,   if AFTS

0,                 otherwise

λ β ≥= 


I Ih                          (11) 
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2,    if
0,       otherwise

µ γ∇ ∇ ≥= 


I Ig                                (12) 

模糊核 k 估计：在给定当前估计的图像 I 后，式(13)转化为一个最小二乘问题。根据中提出图像块先

验[21]、概率估计框架[10]与 L0 梯度稀疏性[20]等有效方法，利用图像梯度信息估计模糊核： 
2 2
2 2min α∇ ⊗ −∇ +

k
I k B k                               (13) 

其中， I∇ 是清晰图像的梯度； B∇ 是模糊图像 B 的梯度。该优化同样在频域中高效求解，随后对核的负

值部分进行截断，并进行归一化处理，以确保其符合物理意义并避免异常响应。 
 
Table 1. Blind deconvolution is a pseudo-code used for blurring images and kernel restoration 
表 1. 盲反卷积用于模糊图像与核恢复的伪代码 

Algorithm 1：Pseudocode of Blind Deconvolution Algorithm for Blurry Image and Kernel Restoration 

 Input: I，B (Image,Blurry) 

1 k ←initialised from coarse resolution 

2 scale ← computed according to k 

3 for r ← 0 to max_scale do 

4  B_downsample ← downsample(IB,scale) 

5  for j ← 0 to max_iter do 

6   I ← solution of Equation (6) 

7   k ← solution of Equation (5) 

8   k ← remove isolated noise (k) 

9   k ← adjust_psf_center(k) 

10  end 

11  k ← estimate_psf(k, scale) 

12  scale ← scale + 1 

13 end 

14 return I, k 

15 Output: I (Latent Image (Intermediate)), 
 k (Blurry Kernel) 

 
为提升解的鲁棒性与收敛性，本文采用由粗至精多尺度优化框架。粗尺度下，AFTS 先验增强主频、

抑制噪声，稳定捕捉模糊核整体结构；尺度细化后逐步恢复高频细节，兼顾核估计一致性与图像清晰度。

AFTS 函数衰减因子设为 0.5、频谱增强系数设为 1.2，经交叉验证泛化能力与复原稳定性良好，二者结合

可避免优化陷入局部极小，显著加速收敛。 

4.2. 非盲去卷积 

本文非盲去卷积部分，基于 Laplace 先验的方法[22]在保留细小空间细节方面通常是有效的。我们首

先使用先验估计一个图像 I1 每个通道，计算 Laplacian 先验估计值得到 I1，形成多通道图像 I1。因为基
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于梯度的方法在抑制振铃伪影方面已被证明能提供准确的结果，使用方程(4)中的梯度的 L0 范数来估计

另一个潜在图像 I2，与[23]中讨论的振铃抑制方法类似，本文计算 I1 和 I2 两个估计图像的差异图 diff，
定位振铃伪影及其他不一致区域；对 diff 进行双边滤波以平滑噪声、保留边缘，再从 I1 中减去滤波结果，

平滑伪影并完成非盲去卷积，其伪代码如表 2 中算法 2 的非盲去卷积部分所示。 
 
Table 2. Joint optimization and post-processing pseudocode based on intermediate latent images and fuzzy kernels 
表 2. 基于中间潜在图像与模糊核的联合优化及后处理伪代码 

Algorithm 2：Pseudocode of Non-blind Deconvolution Algorithm 

1. Input: I (Intermediate Latent Image), K (Intermediate Blur Kernel) 

2. Output: I_result   

3. I1 ← I 

4. for i from 0 to num_channels - 1 do 

5.  Ic ← laplacian_prior_estimation(I, i)  

6.  I1 ← concatenate(I1, Ic)   

7. end for 

8. I2 ← solution_for_I_using_equation(I, K)  

9. diff ← I1-I2  

10. filtered_diff ← bilateral_filter(diff)  

11. I_result ← I1 - filtered_diff  

5. 实验 

本章通过盲图像去模糊实验，使用基准数据集[16] [17]定量对比结果，分析在不同分布图像上的定性

表现。 

5.1. 实验设置 

在参数配置上，正则化参数λ 、µ 与α 的取值分别设定为 43 10−× 、0.004 和 2。为探究这些参数对算

法收敛性的影响，我们以核相似度，即估计模糊核与真实模糊核之间的结构相似性指数(Structural Similar-
ity Index, SSIM)作为核心评估指标。迭代次数上限 max_iter 设为 5，此数值是综合权衡运行效率与图像恢

复精度后确定的最优折中方案。在去卷积模块的实现中，本文参照 Pan 等人[18]提出的非盲去模糊框架；

为确保与现有非 Python 实现方法对比时的公平性，实验过程中未启用 GPU 加速。 
当前主流盲去模糊方法多基于 MATLAB 开发，面对强光导致图像模糊加剧、算法耗时增加的问题，

本文采用 Python 实现可有效改善：Python 兼容 GPU 加速框架，能快速启用硬件加速应对高负载实时处

理需求，且其深度学习工具链丰富，可便捷结合深度模型优化强光下模糊核估计精度，相比 MATLAB 在

硬件加速适配、深度学习融合上的局限，为复杂场景问题解决提供了更灵活的技术路径。 

5.2. 定量结果 

在本节中，实验基于 Kohler [16]、Levin [17]等人两个广泛使用的基准数据集展开。其中 Kohler 等人

的数据集是用高精度机器人精确回放 6 自由度运动轨迹包含旋转，本质上是空间变化来生成模糊图像；

Levin 等人的数据集是平面场景，包含高频噪声图案，由 4 幅 255 × 255 的灰度图像构成，每张图像配备
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8 个不同的卷积核，每个模糊核是通过非负最小二乘拟合从清晰参考图像和模糊图像中估计出来的，它

们用于在相同条件下公平比较不同盲反卷积算法的性能。 
我们采用峰值信噪比(PSNR)、结构相似性指数(SSIM) [24]以及误差比率等指标，对比了本文方法与

当前主流盲去模糊算法的性能。结果如表 3 所示，在衡量复原保真度的 PSNR 指标上，本文方法以 28.5136
的数值处于第一，显著优于[9] [13] [25]等其他方法，这得益于 AFTS 先验对高频特征退化规律的精准捕

捉；在结构一致性 SSIM 指标上，略低于[26]，但高于[25]等对比算法，证明其在图像结构复原上的能力。

即便在误差比率上未达最优，但通过“盲反卷积 + 非盲反卷积”的两步架构与伪影抑制策略，保障了最

终复原质量，凸显整体框架的鲁棒性。 
在关键的推理效率方面，其 7.73 秒的平均推理时间，处于优势。比[25]快超 14 倍。效率提升得益于

AFTS 先验的频域简化计算及半二次分裂与坐标下降的高效求解，无 GPU 加速下便解决了传统方法低效、

深度学习方法高成本的痛点，实现“高精度 + 高效率”兼顾，为实时监控等场景部署提供关键支撑，

PSNR、SSIM 及推理时间对比结果显示其综合性能优异，结果见表 3。 
 
Table 3. Comparative analysis of the dataset by Levin et al. 
表 3. Levin 等人的数据集比较分析 

 PSNR SSIM 误差率 平均推理时间(秒) 

Pan et al. [25] 27.5400 0.8626 1.2076 109.6088 

Pan et al. [26] 28.3800 0.9250 0.8776 15.0949 

Wen et al. [13] 26.1235 0.8364 1.4800 18.6100 

Chen et al. [9] 26.4869 0.8515 1.0123 65.2000 

Radi et al. [1] 28.3400 0.8870 1.7800 8.0570 

Ours 28.5136 0.8933 1.1408 7.7300 

 
通过估计模糊核与真实模糊核分别恢复图像后，计算两者恢复结果的误差比率并绘制累计分布图。

如图 4 所示，本文方法的累积误差比率曲线在误差比较小的区域上升极快，且更快趋近于 1，这表明在绝

大多数情况下，本文方法的误差比显著低于 Pan et al. [25]、Wen et al. [13]等对比方法，误差控制能力更

优。 
实验结果见表 4 所示与[26]相比，本文方法在运行速度上实现了近两倍的提升。(1) 在 255 × 255 分

辨率下，Pan et al. [25]需 109.609 秒、Chen et al. [9]需 65.2 秒、Pan et al. [26]需 15.095 秒、Wen et al. [13]
需 18.61 秒，而本文方法需 7.73 秒，耗时低于其他四类算法；(2) 当分辨率提升至 800 × 800，其他算法

耗时大幅增加，Pan et al. [25]达 1550.932 秒、Chen et al. [9]达 755.43 秒，本文方法以 45.0578 秒保持最

低；(3) 从分辨率适配性与效率优势稳定性来看，其他算法随图像分辨率提升，推理时间多呈指数级增长，

Pan et al. [25]从 255 × 255 到 1024 × 800 分辨率，耗时增长超 20 倍，Chen et al. [9]增长超 12 倍，而本文

方法耗时增长仅 6.2 倍，增长幅度最小。 

5.3. 可视化结果 

本节展示了本文方法在来自不同领域的模糊图像上的恢复效果，并与多种最新的盲图像去模糊算法

进行了对比，如图 5 所示。结果表明，本文方法在保持结构细节与视觉清晰度方面均表现出较强的竞争

力。 
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Figure 4. In the reasoning time comparison experiment, the error ratio was accumulated. To simultaneously demonstrate the 
dual advantages of this method in terms of quality and efficiency, we compared the method proposed in this paper with [25] 
and [26] based on three datasets with different resolutions: Levin [17], Kohler [16], and Sun [27] 
图 4. 误差比率累计在推理时间对比实验中，为了能同时证明本方法在质量和效率上的双重优势，我们基于低中高三

种有不同分辨率的数据集 Levin [17]、Kohler [16]与 Sun [27]，将本文方法与[25]和[26]进行比较 
 
Table 4. The reasoning time of algorithms for images of different dimensions 
表 4. 不同维度图像的算法推理时间 

算法 
推断时间(秒) 

255 × 255 800 × 800 1024 × 800 

Pan et al. [25] 109.609 1550.932 2280.716 

Pan et al. [26] 15.095 210.981 269.872 

Wen et al. [13] 18.61 54.416 66.134 

Chen et al. [9] 65.2 755.43 794.186 

Ours 7.73 45.0578 55.72 
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Figure 5. The results of our blind image deblurring algorithm, compared with those of other state-of-the-art algorithms. From 
left to right: 1) Input the blurred image, followed by 2) the result of Chen et al. [9], 3) the result of Wen et al. [13], 4) the result 
of Pan et al. [25], 5) the result of Pan et al. [26], and 6) the result of our algorithm 
图 5. 我们的去模糊算法的结果，与其他先进算法相比。从左到右：1) 输入模糊图像，随后依次为 2) Chen 等人[9]的
结果，3) Wen 等人[13]的结果，4) Pan 等人[25]的结果，5) Pan 等人[26]的结果，以及 6) 我们的算法结果 

5.4. 结论 

本研究聚焦盲图像去模糊问题，提出融合 AFTS 先验的新型复原模型——该核心创新先验基于“卷

积降低图像稀疏性”特性，通过频域自适应增强(筛选显著频率特征、微缩放相位谱、非线性激活)精准刻

画模糊过程中高频特征稀疏性变化，强化模糊核估计约束，解决传统先验对复杂模糊场景适配不足的问

题。算法设计上，另一创新是将 AFTS 先验嵌入 MAP 框架，结合半二次分裂与交替优化策略实现清晰图

像与模糊核的联合推理及高效更新；同时保留“盲反卷积 + 非盲反卷积”两步架构，前者初步估计核与

图像，后者通过双边滤波抑制振铃伪影，兼顾求解稳定性与复原质量。 
本文的主要贡献：首先，本文提出一种适用于监控图像的稀疏增强先验：针对“卷积操作会降低

图像稀疏性”的痛点，结合图像的边缘分布规律，设计新先验因子，有效区分模糊与清晰图像的高频

特征，为模糊核估计提供更强约束；其次，本文构建了一种监控图像专用盲去模糊模型，具体而言，

它将新先验嵌入目标函数，采用坐标下降法交替优化清晰图像 I 与模糊核 k ，并通过半二次分裂算法

处理非凸优化问题，兼顾求解稳定性与算法效率；最后，为了验证模型有效性，本文在实际数据集与

公开基准数据集上进行了验证操作。验证的实验结果表明，所提方法在诸如误差比率的指标上优于

FFT-ReLU 稀疏先验模型提出的算法，且推理速度比主流深度学习方法快 1.8~2.3 倍，可满足边缘设备

的部署需求。 
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5.5. 未来工作 

未来研究将聚焦三方面：一是融合本方法快速推理特性与深度学习框架，通过神经网络学习模糊核

隐式表示以适配非均匀模糊等复杂场景，优化结构兼顾效率与复原精度、鲁棒性，推动在监控图像等场

景落地；二是在 AFTS 先验计算中，针对频域变换与线性近似引入高效数值优化策略，减少迭代开销与

内存消耗；三是结合图像亮度分布、色彩统计等底层特征，拓展模型适应性与泛化能力。 
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