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Abstract

X-ray security inspection systems play a crucial role in the field of public safety, with their core mis-
sion being the real-time detection of potential contraband items to prevent security risks and emer-
gencies. However, existing conventional X-ray contraband detection models often suffer from ex-
cessive structural complexity, large parameter sizes, and high computational costs. These limita-
tions hinder their efficient deployment on lightweight inspection devices and restrict their perfor-
mance in terms of detection accuracy and inference speed, making it difficult to simultaneously
meet the dual requirements of efficiency and real-time applicability in practical scenarios. To ad-
dress these challenges, this paper proposes a lightweight detection model based on an improved
YOLOvS8, termed YOLO-XRAY. The model is designed with full consideration of the practical de-
mands of contraband detection in complex scenarios. First, a cross-scale attention mechanism is
introduced to effectively integrate information from both high- and low-resolution feature layers,
achieving collaborative modeling of global context and local details. This significantly enhances the
saliency and detection accuracy of small objects under complex backgrounds and occlusion condi-
tions. Second, depthwise separable convolutions are employed to replace standard convolutions,
effectively reducing redundant computation and parameter scale, thereby substantially lowering
computational cost and improving deployment efficiency. Experimental results on the SIXray da-
taset demonstrate that the improved YOLO-XRAY model achieves a 5.8% increase in mAP@50 while
reducing the number of parameters by 5.5%, all while maintaining a lightweight structure. These
findings not only validate the effectiveness and superiority of the proposed model for contraband
recognition tasks but also confirm its potential for achieving high-accuracy, low-latency detection
in real-world security inspection scenarios. Overall, this study provides a practical and feasible so-
lution for the lightweight design and deployment of intelligent security inspection systems and
holds significant implications for advancing the intelligent development of public safety technolo-
gies.
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MR . 2019 4, FBERR CEA T X G BGRB8, SR 1 X AT BE4) i ) Se it A, HEZ)
THE A REZREAR MR E10]. FE, Wi H T — M XS 2 W2 1) X s EG IR 5%,
ST BTN TRARHER A st 11]. WS, SCE-FE AN 72T GPU 1 X b€ i E
B, IR 2 S sl s ik, Ra g R RE I E[12]. 2020 4E, A EAZ AR YOLOV3 31N X i,
il K-means PRI SGIOHE, $& A5 RIS SAOH RS IS 2 [13]. 2021 4F, (A% ASE YOLOVS [
fili AT T SCik,  TECRAIERE B (1 R B 3 2 B T Bk BB R R, O ] PN Y R 22 A R 4 1) SE B R
PROAE T HRSCHE[14]. BARIUAE J7ERAT T BUF g, (BE I EXN B 5 B s a2,
Z REEJCH /N BARRAE SRAESS EATR Gy, DARAE 32 BREE 77 26 A1 T HE LATR] I e BOs B2 3 R 5 2 400
L5 1] R

TEE F5 I, Redmon %8 A[15]32H 7 YOLOV1, ¥ HARKHAT 55 Ak 5 — Rl R 3, 2O T AN
BB 21 H bl FOREAL B 0 bR 2 ¥ 3 21 o 00, T 75 A2 ufige ik X 380, YOLOv1 # 8 5k KI5 SxS
AN, A IR T TN [ 7 i P SRE B R ER , SEIL T R Al [ 16]

AL — B BeA il 75723845 SSD (Single Shot MultiBox Detector), it £ X FEAFAE BTN H 55
SFNLFHE, FEREE EALTWBY BT, ABAE/N B ARkl RS FEREAIR[17]. — BB R AR/ AE T3
J& A B I ZRRE T, AERIE A SR ESR B m N AR BE%E YOLO RAIIARNENR, HIE/hHR
RrIAN R 243750 R M RE R ST PR3 BT, BTN A8 R G T2 B Tk

PR B H ARA& il 7740 Faster R-CNN A Fast-RCNN U 5 46045 & . Faster R-CNN B 4gi@ i X
SR 25 (RPN A R A X 45k, P /M 3E DX 3 A T 43 R S [V, I SRASHE o AR A 2
Fast-RCNN 7£ R-CNN {35 AT o, 853 e Bk BMg FIL S BUREAE, 351 Rol Pooling 5% it
DX 3 S g [ i RO RAEEAT 0 AT BV, R s 1 Rsn il il 8 o 6 T-aX #6773, Schmidt 55 AFIH Faster
R-CNN F1 R-FCN A&l #5725 25 54 [ 18], 1fi Liu 55 AJE T ResNet v2 2244 Fast-RCNN 7E A FF £ 5 -
HUAS T R BRI 45 [ 19]. Ak, Liu 88 N$2 It 2 R 255Kk & 7 ik id 2 RUE Rol 18BUF4 &

DOI: 10.12677/jisp.2026.151012 146 K 5{E5 a8


https://doi.org/10.12677/jisp.2026.151012

B

BRI ML, B DT 7 R KA RE[20].

gi b, B XOGEZER AT S i il =R T . 55—, HARRUEESERH S 2N S EEY
Wi, G EUNRE H AR A BORAE S A€ A SN E s 5 —, ST B HR e R AR S i R AL 51T o BTt
AR TEREN RS LM, =, ARTEEEERERE. EE 5B R far LRl A2
AR AT e 5 TR RIEA L. HETREAE, AN “BREZEFEELE” M “REHEIRE
T IRHEANT, ERERGIBMTEIT AT N G502 REER IR Sy, AT S SRt e ik
KRS B2 5 SN 38 76 oK

3. YOLO-XRAY 1&&!

k1 7R, YOLO-XRAY #AY 2253 = A4 . Backbone 53, A SORE @ 45 R B oM IR W]
R, DARRREER T A S8R, RN OREPRF AL SR IUAE 77, AT 5 v A5 0 Tk B2 A 8 2
Neck #8y, ASCHINES REZFER PG, AR 70 9 ARG A B (A7 A5 B A L, R RE g S 4
MR/ HARANR H AR HIRAAE, 389 9ions RUBEAR A MY H AR VR ENRE 1. BBAt, iZHLHIRERS B & R b7y
BEAN A RS AE AL, B B AE SR A% 57 T B I8 #= E - Head #570» AR SCR AT — B Bderill 22 45144
(I 45 & 2 AR S50 B, 0 H AR AL FHEREAT IR 101, M S B 213 ) = R P e AR I
ARV 7R S RERE, i YOLO-XRAY fE X Ot 2k BIE i 2 283757 N e A RO AN R RT3

S B B H b

o2l  ane DSConV Bbox.Loss
l 160x160x12 C2f
DSConV ™ f DSConV | Cis.Loss

i 80x80x256 ﬂ CrossScaleAtt

C2f 1

SPPF

DSConV | *1
l 320x320x64
DSConV r2

160x160x12

DSConv
MaxPool
MaxPool
MaxPool

Concat
DSClonv

v

i

il

\4

b ooomse Upsample | CrossScaleAtt
DSConV | 7 |
b a0 Cof ﬁZfﬁ‘ =_{ DSConV —" Bbox.Loss
< f — DSConV —|
on Cls.Loss
l 40x40x512 'i -

i

DSConV | rs { CrosssfaleAtt J CrossScaleAtt

l 20x20x512 :

ot psarpe || C2F
l 2°X2°X5120x23x512 I20x20x512 l M Bbox.Loss

SPPF |

- Stride=32 >
backbone Neck ‘ﬂ DSConV F»[ Cls.Loss ]

Figure 1. YOLO-XRAY network structure
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Figure 2. Depthwise separable convolution module
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Figure 3. Cross-scale attention module
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Table 1. Experimental result
1. KWER

A P% R% Params (M)  FLOPS (G) mAP@50 FPS
YOLOv5n 71.2 59.7 2.7 8.5 69.1 242
YOLOvé6n 61.5 65.6 4.6 12.4 70.3 186

YOLOV7-tiny 66.8 713 6.2 13.8 71.6 141
YOLOv8n 68.6 63.5 38 9.3 72.4 322
Faster R-CNN 71.6 73.6 101.7 238.2 75.7 108
Improved RetinaNet 72.3 74.6 80.1 232.4 78.9 136
QCFS 75.4 76.0 98.5 249.8 82.8 134
YOLO-XRAY (ours) 80.5 82.3 3.59 11.8 87.9 305

NTEAMHER YOLO-XRAY HIRIEE /1, ASCAENREG L 23T Haliitb g R4 4). 2553
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Figure 4. Visualization results of YOLO-XRAY on the test set
4. YOLO-XRAY MK SR LA HLALE R
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B, SIGAIRANE 2 R, WERWBLE H, FEEARARER S MBSO B AL N, mAP@S0 A
72.4%, BHEEN3.8M, i E N 9.3 GFLOPs, FPS 4322, BIAEMWAHK.

AL GINREE AT 4 B BRI, mAP@S0 $2TH2 79.5%, MHEFELRTH T 7.1 AE 7 A FNZ
B 3.8 M FFKE 3.13 M, HHEEZE WM 9.3 GFLOPs [%% 8.1 GFLOPs, #HAVRE 1] 7 B 45 b
A RERT T RHEREILRE 77, BB T MR AR R RCR Ak, M R T & 343 FPS. 24X
GINEE R R IR A, mAP@S0 i5F] 83.6%, HLILLRIRE 11.2 NFE s, BEI6R 7RI E 4497
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T2 87.9%, LIRS 15.5 NE . SUFE, 2%&E{08 3.59M, FLOPs 4 11.8, {HSAIRKFTE
B FPS ik 2] 305, o4 EBA T B th 7 VA AE R MRS 5 5 SR P 2 (AT B T R4 (9 P

ZE LR, T RS g5 FLIGAIE TR B ] 2 B AR AR HORN s RORE VR R I A A BT R B DTk
TET BRARBAL ST P AR THE I B, J5 3 W25 0 i 1 5 RO R B RE 7), $ v VARG . — 3%
SEA RS SERURS B SRR E AL, A X B SRR T A AT SRR R T %

Table 2. Results of ablation experiment
2. HEMLIEER

WAy BREEED

P, Hibh P% R% Params (M)  FLOPS (G)  mAP@50 FPS
x x 68.6 63.5 3.8 9.3 72.4 322
3 X 71.9 733 3.13 8.1 79.5 343
x J 78.4 77.9 3.42 10.4 83.6 289
% \ 80.5 82.3 3.59 11.8 87.9 305
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