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Abstract

When aircraft pass through clouds with supercooled water droplets, wings are prone to icing, and
icing caused by the icing system threatens flight safety. Based on the icing principle of aircraft wings,
after analyzing various anti-icing and de-icing methods, this paper determines the hot air anti-icing
system as the core scheme. Through heat transfer analysis, it studies the impact of icing on flight and
the effect of Mach number on wing surface heat transfer coefficient, and clarifies the design principle
of core components of defrosting devices related to surface temperature anti-icing and de-icing,
providing technical support for the anti-icing and de-icing system.
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RHIER T AT HFBE T WK R A T, LR, BRGNS DA 5 R A4
VKILR[1]. HE bR EATHS(ICAO)SE T [2], 1980~2020 fE Al 4R IL K AL 237 425 KHLEE VK EL A1 K

TS BT 1500 NGBXE, G50K OO BT S % 4 O R 2 — o TP BN A R B AT R SR IE
KA PR KR Ja R BRI, BRI TSR WAL BRUKEOR, R 22 4 s R 135 SR A ) 5%
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FA S LR R 5K 45 (2022) B0 BRI SR A T HL B UK R s i R 7R 5Kk, BER T 6 T an
KAE MRV IMAR S . 1% BB BTV AEN L3 AT 2 R b ) s B oK s I BAuise, JH T B
BISIMEARZE N T 5%, W RI MY 0.3 so 7EE VK o T S my/s I LHLR, ARG AILE 20s PR
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oh R B A 0 T T AR W AR (202 1) 6 IR Z IR BE RVEET TAOAHIEFL, B0 e s SR A 2ot
TFEBE BRI Lo, fEA SRR E T T NSO ERE AU R B R R 4570 BT AR T TR 2
BHMRZACTERE(Z 2000 h EHMENJE TR N IEAE 3%), LH58 7 HEKER (AL AIL 155°),
ST COHRATE + BUKBLIK” RN .. f£-35C. FEBKMaE TN, ZiREn#ELE R
VKZEFELE 30 min EHIE 0.5 mm BLR[4].

PEAE Al R 2 2R PFEE (202 1) B0 KL 2 BB AT 45 VKRR & RN M REFEALAL T 3K, 52 R S BLHE AR A ]
WS LR BT UK W R AR TT 2 o 1% BT BAIE i B E AR AL B U TEAT R, K R BRSNS B iR <
(300°C~400°C) 2 I i S5 70 WL I AT R 2, 456 i B 2 SR KRS TR 0 ic . B 5K
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Figure 1. Structural form of anti-icing cavity
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KAT LW SHEARAER SR GB/T 192012006, %S 10,000 K THL(RE-55C, Sk 26.4 kPa),
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Table 1. Comparison of schemes
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FETHBRUKRCR[8]; MAE F R AR A BN LIRS e P R B, ] SR S M DA AN, ARSI 5
LR s VKSR R, A AT 2 HLIR B UK 75K [9]0 XFELUR B 2 o
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Figure 2. Internal region of engine air intake duct
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2.4.1. HRPEMBE
TR C R REOE 95 W/(m>K), BHTER AT 171%, BeREENEH THLE AT am g vk X
W, BRUKRCR R RFIMLIE IR 3K 5

2.4.2. HEEMERS
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AT BR K
2.4.3. ERFFAMY
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fise U JBE e s AL T RIS LS B SR D RO BE D 2 6], SRR SRS
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Figure 3. Distribution diagram of heat exchangers on the wing surface
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Table 2. List of design conditions of the shell cylinder
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Table 3. List of calculation results
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200 66 +4.0 11 6.7 28.7 2 2 23 3 239.4
250 76 +4.0 11 6.7 334 25 3 2.6 3 272.1

3.12. AEHE

FENTEATIE, AL AT R AR RS A KRR, PR BN, HLRAER 2 10,000 K
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