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Abstract

Silicon-based pressure sensors based on MEMS technology are widely used in multiple fields due to
their small size and high precision. However, due to the limitations of their inherent material prop-
erties, silicon-based sensors are not suitable for high-pressure environments. For this purpose, this
paper proposes a peninsula-rod beam structure silicon carbide MEMS piezoresistive pressure sen-
sor. By processing the peninsula and rod beam structure on the diaphragm surface, the local stiff-
ness of the pressure-sensing diaphragm can be increased, and the overall performance of the sensor
can be improved. Based on the small deflection theory, combined with mathematical modeling and
simulation analysis, the output performance of the traditional circular structure diaphragm and the
peninsula - rod beam structure diaphragm was compared. The results show that the proposed pen-
insula - rod beam structure sensor can achieve a sensitivity of 2.19 mV/V/MPa within the pressure
range of 0~10 MPa, which is 58.69% higher than that of the traditional circular structure. By de-
signing a new diaphragm structure, the linearity and sensitivity of the sensor have been effectively
improved, laying a foundation for the normal operation of piezoresistive pressure sensors in ex-
treme environments.
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Figure 1. Diagram of the practical teaching system of automation major
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Figure 2. Wheatstone bridge circuit
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Table 1. The initial geometric dimension parameter range of the peninsula-bar and beam structure

1. 5 - FREWINEILARTSHCEE

RTS8 4475k% ZHE

R B 2472 (a) 400 um < a < 600 pm
TRy () 33 um <¢<50 um
R LE(B) 5um<B<15um
L (W) 45 um < W <55 um
P KB (M) 100 pm < M <200 pm
2 B e FE(N) 50 um <N < 150 um

N T HER(10) R IR R E, O TR A R R L S 3 R, 28 5 76 R
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Table 2. The material properties of sensors

3 2. fERASRAVMIRMERIE

ZH SiC (N #) SiC (P #Y) fik
nll [Pa'] —9.6x 107! 1.5x 10" -102.2 x 107!
n12 [Pa'] 5.8 %1071 -14x 1071 534 x 1071
n44 [Pa™'] 1.6 x 1071 18.1 x 1071 -13.6 x 107!
Resistivity [Q-cm] 0.7 0.14 11.7
Density [g/cm?] 3.23 3.23 2.33
Young’s modulus [GPa] 445 445 170
Poisson’s ratio 0.19 0.19 0.22
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Figure 3. Dimensions of the spring-shaped piezoresistor
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(a) fE SR T2 (b) -5 4E5
Figure 4. Schematic diagrams of pressure sensors with different structures

4. TRGHHENERBTEE

Table 3. Structural parameters used for simulation

3. AT HEMNEREY

ZH HfE
[ TEHE 242 (k) 500 um
JR 5L (0) 40 pm
JEECR A L) 50 pm
R A0 R BEL B (w) 10 pm
T B LB R R 2 um
2R (B) 10 um
FFZE S8 BE(W) 50 um
FHEKEM) 150 pm
- 15 BEE(N) 100 pm

JESWAR(eAEe| 0~10 MPa
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Figure 5. Displacement results of the Peninsula-rod-beam structure and circular structure
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Figure 6. Stress results of the pressure-sensitive diaphragm under 10 MPa
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Figure 7. The potential distribution of different diaphragm structures at 10 MPa
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Figure 8. Theoretical and simulation deformation results of the pressure-sensitive diaphragm under a pressure of 10 MPa
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Figure 9. The results graph of output voltage and nonlinearity for different diaphragm structures
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Figure 10. The main process flow of sensor chips
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(a) BGIEFE P-N-P & SiC AME fy, XTda v idATPRUETEVE, KBREIMBEREMLZ. (b) X P &L SiC
FEZHATEZ, e R R BRI CE )UR SR  - MR EE), ST KA ICP-
RIE Zfi(ih %15 44: SFe/Oa, THE 300 W, L5 5 Pa), ThZINAEE HirR TG, R 62K R T
PERE S - FPREER . (c) AL SAMYIEAE SiC ANE & R IR T BTN Si0, ZEhZ R0 SisN, 4lif
& (d) 1EEEZIE LR E D ETE, KA RIE 2 PE 25 L. CF/O, M%) SiO,, FFLA CHF3/O; 1hZl
SisNg), JF Hild s &Rz, BAEREZREBEN, TRAEMETA. () K DRIE i
%) P A SiC #f RSB (Ih %14k : SFe/Ar, THE 500 W, JE55 8 Pa), PhZIITREE 200 pm, DUBETBUR A5 A -
TEREIIE. (f) KHEBE TRIGE# G PAB)ER, # SiC 4ME v SRR EL s &, SCl IEm)
CiEa R
5. RSB ICHELE

PEIX T LA, i A A i 5 e B [ e VR Nl 64, B 0~10 MPa Yi [ A 1) 0t n 21 B 4 5 -
R R, 3R T 2.19 mV/V/MPa [ R . KA 78 FR k15 10 R BB 45 B 5 gk B
A ARARL LA TR 1 e BEL 2 ) A% B8 1) R BRSSO AT LA S R, AR SCAITHRE He 8 v LG LA f)
FMEREE NI . 2 4 44 T IX I TAEFIA B Ao 5 SR Xt L

Table 4. Comparison of key parameters with those in the literature

4. KESHSEEE

SCHR JUATE5 16 S5} RN O ERYAE 2 JEEH REUE(mV/V/MPa)
Vinod, B. [15] J7 TR A5 K& RIH) 500 um x 500 pm x 25 um 0~10 MPa 0.36
Vinod, B. [5] 7 T A5 (. f ) 1000 pm x 1000 pm x 200 pm  0~40 MPa 0.625
Tian, B. H. [11] [ 7% &5 A4 (R A i) 1000 pum x 50 pm 0~10 MPa 1.74
A A A By - FFRLE M (BALEE) 1000 pm x 40 pm 0~10 MPa 2.19
6. &t

AR SCAE S M R R 3 AN O BT B 2R Ak B, SR T — Rl By - AT RS R R R R B R
COMSOL Multiphysics #AFHAIE 1 dcit A 5ErE, JERYE T A RAE ARG IPERESAL  fe ks
PO REEAMARLNESE . WHFUABL, P8 - FHREH T DL S L A 1t i e, R TOURT O AT SR 45
FEI T CAGR AR IS AR R IR IS P O I BEAR T, 2 By A mT LAAE Js B L DX 85k A B 70 S b o A4 )R
MIE k) S GFTEAS A LE, (RREs R TR REAS 2] 1 B2 0%, 7E 0~10 MPa MR JTE A, REUEE
F|7 2.19mV/V/MPa. It4h, ARRFFEEESL T TE P-N-P ! SiC AME R ERH B & AR i hifE L2,
ONHET BRACRERDRHE AR S0 58 7 1 BT BE5E 1 Ao
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KT TAEAR R 18 N i S Bt 7000 B % 8. (g5 CJ20235046).
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