# 汉川经济技术开发区防洪与用水技术体系优化研究

#### 汪 庆

湖北省孝感市水文水资源勘测局, 湖北 孝感

收稿日期: 2025年7月8日; 录用日期: 2025年8月7日; 发布日期: 2025年10月30日

#### 摘要

根据国家开发区审核公告目录2018版修订工作实施方案有关精神,纳入目录的开发区应组织编制开发区防汛和用水技术评价报告,全面论证开发区洪水防御情况及措施,指导开发区落实防洪保安要求,开展规划水资源论证,审核水资源使用情况。本文剖析了汉川经济技术开发区防洪与用水现状及问题,通过借鉴福州、宁波、赣州等城市在防洪排涝与水资源利用方面的成功经验,结合汉川开发区实际,从工程技术、管理模式、智慧化建设等维度提出针对性优化策略,旨在构建安全、高效、可持续的水管理体系,为开发区高质量发展提供坚实保障。

#### 关键词

经济技术开发区, 防洪, 用水, 体系优化

# Research on the Optimization of Flood Control and Water Use Technology System in Hanchuan Economic and Technological Development Zone

#### **Qing Wang**

Xiaogan Hydrology and Water Resources Survey Bureau of Hubei Province, Xiaogan Hubei

Received: July 8, 2025; accepted: August 7, 2025; published: October 30, 2025

#### **Abstract**

In accordance with the relevant spirit of the Implementation Plan for the Revision of the National Development Zone Review and Announcement Directory (2018 Edition), the development zones included in the directory should organize the compilation of technical evaluation reports on flood prevention and water use, and

作者简介: 汪庆(1976-), 男, 湖北竹溪人, 高级工程师, 主要从事水文水资源方面研究。Email: hbsywangqing@qq.com

文章引用: 汪庆. 汉川经济技术开发区防洪与用水技术体系优化研究[J]. 水资源研究, 2025, 14(5): 540-548. DOI: 10.12677/jwrr.2025.145059

comprehensively argue the flood defense situation and measures. It is necessary to guide the development zones to implement the requirements of flood control and security, and carry out planning water resource argumentation, and review the water resource usage situation. This paper analyzes the current situation and problems of flood control and water use in Hanchuan Economic and Technological Development Zone. By drawing on the successful experiences of cities such as Fuzhou, Ningbo, and Ganzhou in flood control and drainage and water resource utilization, and combining the actual situation of the Development Zone, targeted optimization strategies are proposed from the dimensions of engineering technology, management mode, and intelligent construction, aiming to build a safe, efficient, and sustainable water management system and provide a solid guarantee for the high-quality development of the development zone.

#### **Keywords**

Economic Development Zone, Flood Control, Water Supply, System Optimization

Copyright © 2025 by author(s) and Wuhan University & Bureau of Hydrology, Changjiang Water Resources Commission. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/



Open Access

#### 1. 引言

汉川经济技术开发区作为国家级开发区,成立于 1992 年,规划面积 960 公倾,地处汉江下游平原,为了科学统筹开发区布局,推动开发区优化整合,更好发挥开发区功能作用,此次修订后开发区范围面积为 5246 公倾,面积扩大了 5.5 倍。汉川工业经济强劲、发展潜力巨大,各类市场主体超过 10 万家,规模以上工业企业达到 577 家,形成了以纺织服装、食品加工、装备制造三大主导产业和包装印刷、光电子信息、泛家居、新材料等一批特色优势产业,规上工业总产值、规上工业企业数均连续四年居全省县市第一,连续三年获评中国工业百强县市。随着开发区产业规模扩张与人口集聚,防洪与用水压力剧增,现有技术体系同区域水资源论证[1]和数字孪生[2]要求还存在一定差距。通过对福州[3]、宁波[4]、赣州[5]、武汉[6]城市先进技术与管理经验的借鉴,应用新技术、引进新理念,探索适合汉川开发区的优化防洪和用水路径具有重要现实意义。

# 2. 汉川经济技术开发区现状剖析

#### 2.1. 区域概况

汉川经济技术开发区位于湖北省汉川市,地处武汉城市圈核心层,总面积 5246 公顷,涵盖 31 个区块,由原新河镇扩大至城隍镇、庙头镇、华严农场、分水镇、马口镇、西江乡、脉旺镇、沉湖镇、田二河镇 12 个乡镇,形成"一区四园七大片区"格局。区域内水系发达,汉江、汉北河等穿流而过,如图 1,产业以纺织服装、食品加工、装备制造为主导,经济活动活跃。

#### 2.2. 防洪技术体系现状

1998年7月至9月,长江全流域大洪水,汉川段汉江水位突破历史极值(29.43 m),开发区(当时为初期建设阶段)多处围堰溃口,在建工程被淹,全市农田、工厂受灾严重,开发区建设进度延迟1年以上。2016年7月,单日降雨量突破300 mm,城区及开发区严重内涝,开发区道路积水深达0.5至1.2 m,物流中断,电力设施受损。约30家工厂停工,直接损失超10亿元。2020年6月至8月,汉江、汉北河水位全线超保证水位,汉川站水位达历史第二高(29.39 m),开发区多处堤防出现管涌、漫溢险情,部分企业厂区进水深度超1 m,约50家企业停产,经济损失超30亿元,启用汈汊湖蓄滞洪区分洪,转移群众3万余人。

防洪标准上,汉江堤防规划达 100 年一遇(1935 年洪水标准),核心区内涝按 50 年一遇设防,汉北河及中小

河流标准相对较低,经济区新河片位于主城区,按 50 年一遇一日暴雨一日排完,区域内主干渠及其相连接的支沟综合设计排涝洪水流量为 167.5 m³/s,其中经济开发区新河片产流约 55 m³/s,现有泵站排洪能力为 37.8 m³/s,现有排洪能力有所不足,根据《汉川城市防洪规划》将徐家口泵站和洪南泵站进行改造和重建,项目完成后区域综合排洪能力将达 78.9 m³/s,基本更够满足现有工业园区的排涝能力,但就项目区域主干渠以及连接的支沟产流而言,现有排涝能力有所不足。

现有防洪工程以堤防、泵站、水闸为主体,存在防洪标准不统一,除新河片位于主城区排涝标准为50年一遇,分布在乡镇的工业园20年一遇,排涝能力有待加强均存在泵站水闸老化、部门多头管理、指挥平台智慧不高、内涝防治不够、生态理念不强等问题。

#### 2.3. 水资源利用现状

汉川市位于江汉平原腹地,全市国土面积 1663 平方公里,辖 25 个乡镇场街道,1 个国家经济技术开发区,人口 105 万,2024 年完成地区生产总值 940.05 亿元。汉川市多年降水 1164.1 mm,多年地表水资源量 7.39 亿 m³,

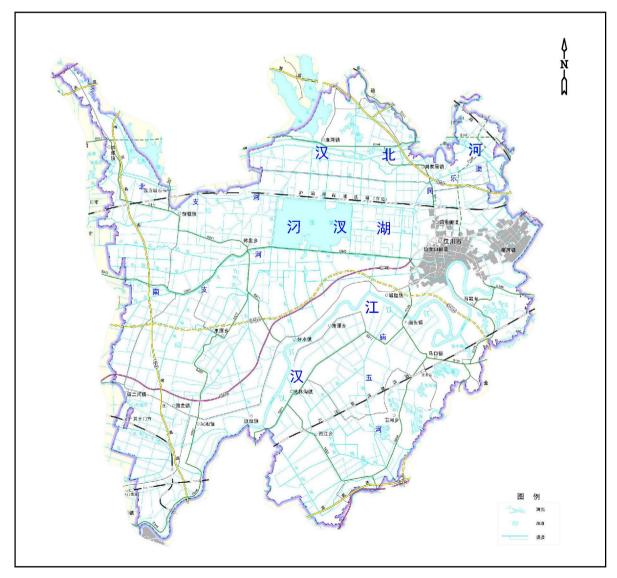
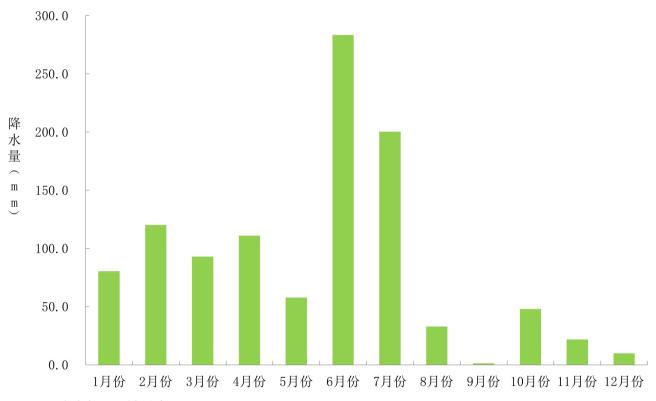




图 1. 汉川市水系图

多年地下水资源量 2.49 亿  $m^3$ ,地下水资源与地表水资源不重复量 0.52 亿  $m^3$ ,水资源总量 7.91 亿  $m^3$ 。近 5 年,平均用水总量 11.85 亿  $m^3$ ,农业用水 4.40 亿  $m^3$ ,工业用水总量 6.62 亿  $m^3$ ,生活用水量 0.83 亿  $m^3$ ,其中工业用水占用水总量 55.8%,工业是用水大户。

依据《2024年汉川市水资源公报》[7],2024年汉川市平均降水量1048.8 mm,折合降水量17.24亿 m³,与上年比较减少6.3%,与多年平均值比较偏少9.9%。2024年汉川市降水量月过程分布见图2。



#### 图 2. 汉川市降水量月过程分布图

2024 年汉川市地表径流深 374.3 mm, 折合径流量 6.15 亿 m³, 与上年比较减少 0.3%, 与多年平均比较偏少 16.7%。2024 年汉川市地下水资源量 2.51 亿 m³, 与上年比较减少 9.9%, 与多年平均比较偏多 0.9%。其中平原区地下水资源量 2.79 亿 m³, 平原区与山丘区间地下水资源重复计算量 0.28 亿 m³。水资源量分类统计见表 1。

2024 年汉川市总供水量 11.67 亿  $m^3$ ,其中地表水供水量 11.58 亿  $m^3$ ,占总供水量的 99.2%;地下水供水量 0.09 亿  $m^3$ ,占总供水量的 0.8%。地表水源供水中,引水工程供水量 1.27 亿  $m^3$ ,提水工程供水量 10.31 亿  $m^3$ ,详见表 2。

表 1. 2024 年汉川市水资源量分类统计表(单位: 亿 m³)

| 项目  | 年降水量  | 地表水资源量 | 地下水资源量 | 不重复计算量 | 水资源总量 |
|-----|-------|--------|--------|--------|-------|
| 量算值 | 17.24 | 6.15   | 2.51   | 0.47   | 6.62  |

表 2. 2024 年汉川市供水量统计表(单位: 亿 m³)

| 行政分区 - |    | 地表水源 |       |       | 地下水源 | 总供水量  | 与上年比较(%) |
|--------|----|------|-------|-------|------|-------|----------|
|        | 蓄水 | 引水   | 提水    | 合计    | 地下小你 | 心於外里  | 马工平比权(%) |
| 汉川市    |    | 1.27 | 10.31 | 11.58 | 0.09 | 11.67 | -3.4     |

水资源禀赋方面,存在夏汛冬枯、时空分布不均、北少南多等特点。本次经济开发区扩区后,基本把汉川市工业全部纳入,用水总量呈增长趋势,开发区现状用水总量为 6378.45 万 m³/a,规划用水总量为 10778.45 万 m³/a,新增需水量 4400 万 m³/a。规划新增 4400 万 m³/a。目前供水由城东、新河等水厂,水源单一,且存在用水效率低(工业用水重复利用率 65%,低于省级开发区平均 75%)、水质风险(内河渠部分月份呈劣 V 类)、自备水源监管薄弱、用水水权不够、节水建设还需提升等问题。

### 3. 其他城市经验借鉴

#### 3.1. 福州: 水系联排联调与智慧防洪

福州地处闽江下游,河网密布,夏秋多台风暴雨,曾饱受内涝困扰。通过创新建立水系联排联调机制,整合涉水机构成立城区水系联排联调中心,对库、湖、河、闸、站等统一管理调度。利用大数据、物联网等技术打造科学调度系统,构建"眼(感知监测预警)、脑(数据分析)、手(自动化改造)"体系,实现精准调控。如晋安河直排闽江通道项目,缩短行洪距离,提升江北城区排涝能力。

打破"九龙治水"旧格局,通过体制机制创新与数字技术赋能,实现"一个中心管全域、一支队伍管调度"的系统化防洪模式。① 体制创新,建设联排联调中心。整合水利、城建、城管等部门职能,成立统一指挥机构,集中管理水库、河道、管网、闸泵等涉水设施,消除部门协作壁垒;构建"防洪大脑"智慧平台,全域感知网络:布设雨量站、水位计、监控设备,实时采集气象、水文、工情数据;开发智能决策系统,利用水文模型模拟洪涝演进,预判内涝风险,基于 AI 算法生成水库、河道、管网联合调度方案;联动气象预报实现暴雨预警"超前响应"。② 精准调度,"四库联调"机制。汛前预腾空:根据预报提前降低内河水位、排空管网,腾出蓄洪空间;雨中协同控:水库拦洪削峰,闸门调控河网流量;泵站按水位智能启闭,强排积水;利用调蓄池、绿地滞蓄雨水,避免洪峰叠加;远程一键调度:98%重要闸泵实现远程集中控制,指令响应从小时级缩至分钟级。③ 全流程闭环管理:预报预警→预泄预排→动态调控→应急抢险→复盘优化,形成智慧防洪闭环。

#### 3.2. 宁波: 数字孪生赋能防洪与供水优化

2022年4月,水利部办公厅印发了《数字孪生流域建设先行先试台账》,宁波市"数字孪生甬江流域"成功入选水利部数字孪生试点,如图 3。市水利局启动项目建设,形成实时感知、水信互联、过程跟踪、智能处理的治水新格局,目前具有5项功能模块、24个业务功能,集成了水利、资规、应急、气象多部门多源数据,已上线洪涝预报、风险预警、调度仿真预演等重点功能,深度融合实景三维与虚实融合交互技术,打造甬江流域洪涝预报、预警、预演、预案的调度模型与业务体系。

宁波借助数字孪生技术,构建庞大感知网络,1.4 万余个监测点位覆盖各类水利工程。甬江流域预报调度一体化模型集成多部门数据,实现流域与模型动态联动,精准预报水位,科学调整防洪调度策略,成功利用台风后期雨洪资源。

供水方面,首创城市供水环网"高速路",2006年,宁波在国内率先提出建设城市供水环网,建成全长48.2公里的城市"供水高速公路"。打破传统"一厂供一区"的模式,各水厂产水后先汇入环网"高速路",再根据各区域的实际用水需求,通过智能化的调配系统精准分配至各区域。在用水高峰期,系统能自动感知各区域的用水压力变化,从环网中快速调配水量,确保全域水质稳定,实现水资源的统一调度与高效配置。随着城市发展,供水环网不断延伸,供水面积由800平方公里扩展到1642平方公里,宛如一条条城市大动脉,守护着饮用水生命线。

构建"库群互联、三网协同"智慧水网,库群互联:以钦寸水库通水和桃源水厂投产为契机,不断扩大多水库串联的规模,使中心城区日制水供水能力从2005年的97万吨提升至如今的200万吨,每日有70万吨自来水为"超滤水",占总量的35%。各水库之间通过科学的联合调度,在丰水期合理蓄水,枯水期相互补充,保障城市供水的稳定性和持续性。

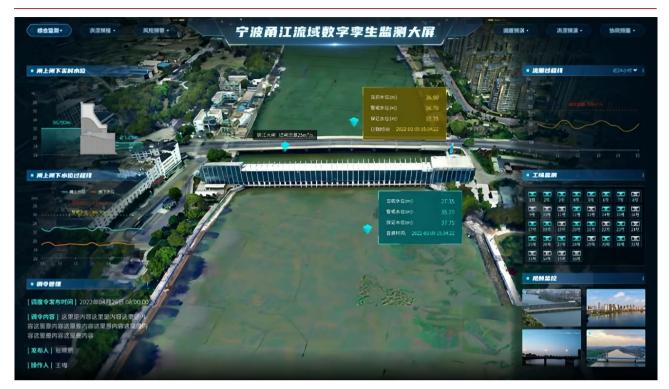



图 3. 宁波甬江流域数字孪生平台

三网协同:以城区供水网为试点,率先建成数字孪生水网系统。结合供水网、雨水网和污水网模型,着力打造"孪生三网"。在数字孪生水网系统中,常态下的多水源优化调度模型根据城市不同区域的用水需求,实时分析各水库、水厂的供水能力,通过智能算法自动规划每一滴水的最优输送路径,确保水资源高效利用。同时,通过对雨水网和污水网的实时监测和模拟分析,及时发现管网漏损、堵塞等问题,实现对城市供水从"源头-水厂-龙头"的全链条智慧监管。例如,当监测到某区域雨水管网出现堵塞导致积水时,系统能迅速定位问题点,并联动相关部门进行清理,避免积水对供水设施造成影响;通过对污水网水质、水量的监测,合理调整污水处理厂的运行参数,保障污水达标排放,避免对水源造成污染,从而间接保障供水安全。

#### 3.3. 赣州: 古代智慧与现代技术结合的防洪排涝

赣州福寿沟始建于宋代,利用龟背形地貌分区排水,沟道设计合理,水窗利用杠杆和水压原理防倒灌,城内水塘调节排水量,且设有防堵清通设施。现代赣州在此基础上,结合海绵城市建设,提升城市防洪排涝能力。

仿"龟背形"地形重塑技术,对经济开发区内道路进行系统改造,主干道采用拱形断面(中央隆起 2%~3%坡度),雨水向两侧绿化带分流,园区支路实施单侧坡度优化(坡度 ≥1.5%),引导雨水流向就近调蓄设施。

地块竖向设计,新建厂区强制要求"屋顶-地面-地下"三级排水:屋顶雨水→地面透水铺装→厂区周边生态 边沟;地面雨水通过 0.3~0.5 m 微地形高差导流至下沉式绿地;地下车库入口设 20 cm 反坡 + 截水沟,阻止倒灌。

创造性融合宋代福寿沟古代智慧与现代技术,构建"古系统修复 + 智慧赋能 + 生态扩容"三位一体防洪体系。核心举措有三:一是古沟科学活化。清淤修复 12.6 公里宋代砖拱沟渠,保留水力自动闸门设计,通过"福沟排东南、寿沟排西北"双沟依地势自然汇入章贡两江,至今承担老城 30%排水量,并嫁接现代管网系统;二是智慧技术赋能。在古沟关键节点布设 600 余传感器,建立数字孪生平台实时监测水位淤积,联动 AI 算法动态调控闸门与新建泵站(如建春门泵站),实现古沟与现代设施智能联排;三是生态调蓄扩容。恢复宋代水塘链系统(改造文庙广场等为下沉绿地),老城透水铺装率达 45%,新建峰山调蓄湖(库容 120 万 m³)分流古沟压力,章江新区配套雨

水花园等海绵设施。实施成效:老城区抵御 2019 年单日 265 mm 暴雨(50 年一遇)无内涝,宋代排水系统持续运行 900 余年仍高效运作:年回补地下水 200 万吨,热岛强度降低 2℃,形成"低干预、高韧性"的古城治水范式。

# 3.4. 武汉:河道综合整治与海绵城市建设

武汉中冶南方在玉龙河、新十里长渠等河道整治中,贯彻海绵城市理念,将防涝行洪与生态保护、景观打造相结合。玉龙河优化河道线形,采用生态复合断面,提升行泄流量;沿岸排口融入智能截留、初雨调蓄等设计保障水质,如图 4。新十里长渠通过源头减排、拓宽渠道等措施,提高排涝能力。

以"河道生态修复 + 海绵城市弹性调控"为核心,统筹解决水环境治理与内涝防治问题,推动城市从"对抗洪水"向"与水共生"转型。核心举措有两方面:一是河道综合整治(治污 + 防洪 + 生态)。截污清淤:新建500 + 公里污水管网,实施雨污分流,直排污染削减70%;疏通河湖淤积,引入长江活水激活水系(如大东湖水网工程);生态修复:拆除硬化驳岸,建设生态缓坡、湿地浮岛(巡司河示范段),提升水体自净能力;滨水空间改造:融合防洪与休闲功能,汉口江滩等堤防提升至百年一遇标准,布设智能水位/水质监测系统。二是海绵城市建设(全域渗透 + 智慧调蓄)。系统规划:划定156个汇水分区,强制新建项目落实透水铺装率 ≥40%、年径流控制率 ≥70%;三类空间技术应用:建筑小区屋顶绿化 + 雨水花园(武钢三中径流削减60%);道路广场生态树池 + 透水沥青(临江大道内涝减50%);公园绿地矿坑改建调蓄池(戴家湖公园蓄水12万 m³),分散式雨水罐、生物滞留带覆盖30%建成区。



图 4. 玉龙河生态复合断面

## 4. 汉川开发区优化策略

#### 4.1. 防洪体系优化

#### 4.1.1. 工程技术升级

参照福州、武汉经验,按 50 年一遇标准全面加固汉江干堤及重点区域堤防,优化流域调度达到预防 100 年一遇外洪。新建大型排涝泵站,改造老旧泵站,使总排涝能力提升至 120 m³/s。优化河道设计,采用生态复合断面,增强河道行洪与生态功能。

打破壁垒,建立强有力的"汉川市防洪排涝联合调度中心"。① 深度整合资源:不仅是整合水利、城管(市政排水)、住建(管网)、应急管理等涉水部门,还应明确纳入气象局(精准预报)、自然资源和规划局(地质风险预

警)、交通运输局(涉水路桥安全)以及主要开发区管委会。中心需获得市级充分授权,拥有跨部门协调和统一调度指令下达的权力。② 实体化运作:设立常设机构,配备专业技术人员(水利工程师、水文专家、IT 工程师、调度员等),而非临时性协调机构。中心主任应由市领导或具有足够权威的部门负责人担任。③ 职责明晰:负责统一规划、统一监测、统一预警、统一调度、统一应急响应。涵盖汉江干堤、重要支流、湖泊(如汈汊湖)、城区排水管网、泵站、涵闸、调蓄设施(如规划或现有湖泊、绿地)等所有涉水要素。

结合汉川经济技术开发区分布在 10 个乡镇的特性,依据汉川市主要渠道分布情况,如图 5, 打造直排汉江的通道,加强内河渠的水质监控,做到"高筑坝、深挖渠、泵站抽水靠实力"平原水网区的水利建设特点。

开发区地块内主要以渠道为主,规划中应拓宽主渠道 40 至 60 米,保留天然河曲形成消能弯道,沿河建设生态渗滤(卵石填料层 + 净水植物),入汉江口改建双闸门泵站综合体,在开发区规划中增设"生态建设专章",要求涉河涉渠建设提交生态修复方案与智慧运维预算,实现"水安全-水环境-水经济"协同发展。

汉川开发区规划可参考其利用地形优化排水布局,建设调蓄设施,加强排水管网维护管理,传承古代治水智慧并融合现代技术。

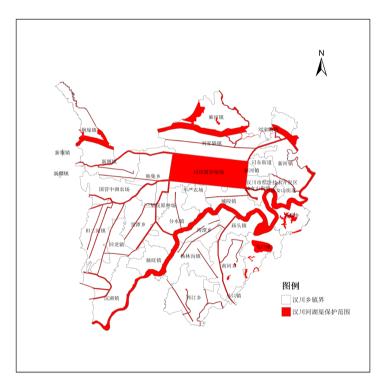



图 5. 汉川市主要渠道分布图

#### 4.1.2. 智慧防洪建设

借鉴宁波数字孪生与福州智慧调度经验,构建"雨量-水位-流量"实时监测网络,接入泵站、水闸数据,建立洪水淹没模型,实现风险预警与联合调度,提升防洪决策科学性与应急响应速度。

构建"智慧防洪排涝大脑",打造汉川市智慧水情调度平台。① 加密布设:在汉江沿线(尤其是险工险段)、主要内河(如涵闸河、泵站河)、汈汊湖及关键圩垸、城区易涝点、重要排水泵站、涵闸、交通枢纽、地下空间(停车场、商场入口)等,大规模部署水位计、雨量计、流量计、视频监控、土壤湿度传感器。② 立体监测:结合卫星遥感(监测大范围水体变化、淹没区)、无人机巡查(灾情快速评估、重点区域详查)形成"天-空-地"一体化监测网络。③ 物联网整合:将所有感知设备通过物联网技术接入平台,实现数据实时传输。④ 数据融合:整合实时监测数据、气象预报(精细化到乡镇/街道)、历史水文资料、地理信息(GIS)、城市三维模型、供排水管网模型、水利

工程参数、应急预案等。⑤ 洪水预报模型:精准预测汉江洪峰到达时间、水位及对支流顶托影响。⑥ 城市内涝模型:基于降雨预报和管网现状,模拟不同降雨情景下的积水范围、深度和持续时间。⑦ 联合调度优化模型:根据预报和实时水情,模拟不同调度方案(如提前预降汈汊湖水位、泵站群启停组合、涵闸启闭时机、错峰调度等)的效果,自动推荐或辅助决策最优调度方案,实现湖、河、渠、闸、泵、网的协同最优。⑧ 风险评估与预警模型:动态评估不同区域、不同设施的洪涝风险等级,提前发布分级预警。⑨ 人工智能应用:利用 AI 进行短临降雨预报订正、图像识别(视频监控自动识别积水、险情)、历史灾情模式学习,提升预测准确性和响应速度。

#### 4.2. 水资源利用优化

#### 4.2.1. 多源供水与水质保障

推进城南水厂建设,实现"汉江 + 汉北河"双水源互联互通,提升应急供水能力,结合汉北河水质部分月份呈 IV 类的实际情况,建设供工业的应急水厂,当汉江枯水月份水量不足时,应急供应开发区部分对水质要求不高的企业。

借鉴武汉河道治理经验,治理黑臭水体,新建水质监测站,严格入河排污口管理,保障水源水质。大力推进水网连通工程,调引汉江水定期补充内部渠道水量,让内渠水流"动"起来,一方面提高农业用水效率,另一方面改进渠道水质,让开发区内"水更清,岸更绿"。

#### 4.2.2. 节水与再生水利用

学习先进城市节水经验,强制高耗水行业推行中水回用技术,目标工业用水重复利用率达 80%。继续扩大节水型社会达标建设,努力提升节水载体达标,做到"节水型单位、节水型企业、节水型小区、节水型学校、节水型灌区"全覆盖,深入开展节水进机关、进校园、进社区、进企业、进农村的节水宣传"五进"活动,全面提升全民"爱水、护水、节水"意识。

大力建设再生水管网,提高非常规水利用规模,替代部分新鲜水,降低水资源消耗。一是利用汉川火电直流冷凝水的利用,近3年直流火电用水5.7亿 m³,其尾水利用将会解决汉川经济技术开发区用水指标紧缺的问题。二是开展污水处理厂尾水利用,建设城市绿化自动喷灌、滴灌系统,将处理后的污水用于城市绿化,大力提高用水效率。

#### 5. 结论

汉川经济技术开发区防洪和用水论证借鉴福州、宁波、赣州、武汉等城市在防洪排涝与水资源利用方面的成功经验,结合自身实际提出针对性优化策略,有望解决当前防洪与用水难题,构建安全、高效、可持续的水资源管理体系,为区域经济社会高质量发展提供坚实水安全保障。未来应持续关注先进技术发展,不断完善水资源管理体系,提升应对水安全挑战的能力。

# 参考文献

- [1] 李原园. GB/T 51051-2014《水资源规划规范》[S]. 北京: 中国计划出版社, 2015.
- [2] 数字孪生水利工程建设技术导则(试行)[S]. 北京: 水利部, 2022.
- [3] 刘春沐阳. 福州创新水系联排联调机制调查[N]. 经济日报, 2022-08-12(09).
- [4] 宁波数字孪生水利先行先试 智慧治水赋能高质量发展[EB/OL]. 新华网. http://zj.news.cn/20250704/28acf5ba97864dcb8a68b66fdb2ff22f/c.html, 2025-07-04.
- [5] 吴庆洲,李炎,吴运江,等.中国古城排涝减灾经验及启示[C]//中国工程院土木,水利与建筑工程学部,中国土木工程学会,中国水利学会,中国土木工程学会市政工程分会. 2013 城市防洪国际论坛论文专集. 北京:中国水利水电出版社, 2013: 15-21+139-140.
- [6] 玉龙河、新十里长渠城市"水道"兼具防洪、生态、亲水多重功能[N]. 长江日报, 2022-03-22.
- [7] 2024 年汉川市水资源公报[Z]. 汉川市水利和湖泊局, 2024-07.