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Abstract

The deep learning recurrent neural network technology with renewal gate and reset gate control (GRU) was
used to select 29 rainfall runoff processes in the upper reaches of Chongyangxi River from 1997 to 2021,
among which 21 floods were selected as the training set. Hourly precipitation records from six upstream

EE®A: R, 5, WL, @RI, BT AR SOK B, Email: jom720@126.com

SCESI M R, R, BRENE, Rk, R LIXURIER GRU APZE I K TR LT ST ). KRV AL, 2025, 14(6):
577-589. DOI: 10.12677/jwrr.2025.146063


https://www.hanspub.org/journal/jwrr
https://doi.org/10.12677/jwrr.2025.146063
https://doi.org/10.12677/jwrr.2025.146063
https://www.hanspub.org/

L XIS, GRU A1 28 I 28 33k 7K P A5 AU A

rain gauges—Langu among them—together with the antecedent discharge measured at the downstream
Wuyishan station were employed as model inputs. Taking the corresponding flow of this section as the model
output, the root-mean-square error minimum criterion was used to analyze the number of hidden layer units
and the number of network iteration rounds. At the same time, a full-connection layer was set after the GRU
layer and the full-connection layer was processed by Dropout to construct a GRU neural network model
for mountain watershed. The model was used to test the remaining 8 floods and compared with the artifi-
cial neural network PRPB model. The results show that the GRU model performs better in prediction, and
its flood process prediction error is smaller than that of PRPB model, and the accuracy of flood peak flow
prediction is slightly higher than that of PRBP model. The Nash efficiency coefficient of the model is also
higher than that of the latter, so it is suitable for flood forecasting in mountain basins.
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1. 518

TR XA B kg o TAE, BOK TR R IEE A BB TR aGH Imw sk i v A PR K 73
W, 2 BRI B O ARHE . BR TR RSN, M @GP 4 M 45 (Recurrent Neural Networks, RNN) A
FHOKRTHR[L], PTLLH R BIRTE R JEEESR, JHIAPRE W2 DR HL B0 1T S5 4038 S SOt (8] e S A D Eis , w2 A
TARR BT 7E[2] o ST, il RNN BEELTES: S KIS AP AR, AFERREETE R I . ik, Cho S8 AF&H T 174
HIIE A 5 G 22 9 2 (Gated Recurrent Unit, GRU) [3]. 7E/K TR AL, 2T GRU IWF AL IERCAN# S . GRU & —
Fset 3 B2 12 M 4% (Long Short-Term Memory, LSTM)ZRARRIfEAL[4]: ol LSTM F st =1 1 55N T T A& 3,
TERRER— R, R R ER ] WA R EICIZIREAR &, W24 45 FAE e AZ RS AW ) 5 15 FR
k. AHELT LSTM 4%, GRU 45 RETEIR B [RIFESCR I EAE RIS, $ETHE A% [5].

AR, OB SN IEMML LI R6]. 18127 — i Ja B[R [7] 31 22 FAL BT L [8] = /N2 THI R 44 & GRU [)i&E
WG AV EZEHEERREIMEEE, Fla: el RREZ(1GWO) H 38 % GRU S 44[9]. LAk
EHRFILE(SSA) RS CNN-LSTM 5 GRU XUCHK[10]1%F, /R T “BEASEIRE + WRE4M” MERE .
DX IRIGAE J7 1, BR[11]/#4L T GRU 53 H1 Y Simple-LSTM KT _E 37 K I TR 2R 4 1 30%; De Melo
G Z[12]iE52 GRU 5 LSTM A K #IE I —2; Gao Z5[13]5%H GRU H1 LSTM i Fhsh -1 9 28 o /b 1 i I8 vy
FEINRRAEAT IR, XT3 h I R 22 TR AR 5%; SRS S[14] R B GRU X+l & KA PR N JFi
HT ZEREE 0.90; Khatun ZE[15]5KH CNN-GRU 577 B[R T 04 4t Ji] 25 X i W 7 2 A0 ro oA 32 4 7
15%. %5, GRU O “IENMK - 4252 - IRG” MATEZ RN, 2 JUZRIEHFEN, 5= PR bl X
N FH 3558 T iR Bkl

B RN N MR 7T 2 SRR TR S 0% e . BUATE P 5 X Bl e B8 IX sk A R, GRU AR BSTE L X I Sk It 35
A FEAS AU 7 B SEBIAN S, W SCLAER PR Rl Bl, FIF 29 B it R, ML 6 SN RS
TR [ 7K 5 QR LUK STl BT IR S BN« SR SR B A L X R Sk GRU M2 K TR IS AY ;. I 5
&4t PRBP BLAYHEAT XS L, BOUF HAEVRIEIR & . DEIURT (], KRR R ZE IR S, Sl XSk i it
ARG B SR R A IR K R AR A . AR TR R RIS A, SRR, AR R, W]
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PUER T3 JZ B Ayt K B i 80tk 5 T A, i sl vt o ok TAE SR (LR 55 o
2. GRU M4 FE %
2.1. GRU E A%

5hriE RNN AHEL, GRU G@IEGI N TS, BERS A RO e K IR B Ao &R, R THBE A R B AN I 25
RR[16]. GRU WAL IR L5 K I 1.
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& 1. GRU & W& EE (K LEH

22. IERIERETEMRAEZ.

2 2 GRU [ 1= HIEHA e S 4i kg, HrhE B TR 1/2 GRU FI A, B8 kel L ER
X RCRAS PR AR, T SR T TR E BANRE B SRR . B E B E/EH, GRU f&fE
T LR B P R KR OE 2R . AERET 2R |, GRU AT LSTM oA, X fii 45 L AE I 2Rt 2 b e
T TR A [17]

hu 7 . p h\\\ h\
(X)= aA> L
T (X
re Zt hl‘
6 [0 tanh

X
[l 2. GRU | {5 ER 28 5% PO EL&H

S, HTRE 2 H N AR B x AHT I TR T A S b SREREUAN T SR B IR S

GRU %4 2% ¥ B3 ] 470 53 % S A7 ()5 B EAT #ih), B RO@ AR € L Ip IRt i 20 22 /0 (s R Ak A% 08 &2
t+1 %z N EDET T R SR, R
Zt :G[Wz(ht—l'xt)-'_bz:l (1)

X o Jy Sigmoid FIEBREG W, DB IBUERERE: b, SR 1 ELAE RS .
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GRU W15 —AMITEMARNEET], e M Z I REE T L AT GE 5 2 iDIRES Z R A RBE . HARES
POE T SERPIRA T H AR E R R P AR . N BT TRPEHNE BAERE, HAtE R F

rt :O-[Wr (ht—l’ Xt)+br] (2)
A W, NEETTBUARRE: b NEE] B

R AN B R S, et (5 B v KT B AT I DB R M TR B AR S b, 2R R RT IR A1 x,
PR, RS SO B K00 $ 36 B R R & -1, 1]
h :tanhl:wh(rtght—l'xt)-i_bh} 3
Kb W, WRURAERE: b AR EAE . X BB R VBRI, 0T LI MRS .
CTEHIIL BB, T 2 5 T MRS h RS A 3 RS h FUHEEARES R 10
h=(1-z)oh,+z0h @)

Kbz, O FTHEFRARIERRAFERE Ry Pt 462 217 AL TE TS W0 70 2% |l S T 143 I B 7, 65
Jiidk . ERZATEIN h Kol dn 2 B A S Br F R BB U &5 2Ry, tHEE TR

y, = f(W,h +b,) (5)
A w, o EBUERERE: b, ok = e B
3. LHXtiE GRU £ M4 K TR SR 4o
3.1, FIEHES

PRS2 BHIR IR Sk (i) s AT 7E, AR A 1078 km2. FIJ A Thiessen polygon X it AT 7
JeRIG, SR & FHCIARCE, [N 24T & B oc i B B F L sl RVC T 8], PR 3. & L.

L
©  JRICHE A

A T

[ 3. REZR iRk R E
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F 1 BFRESETERRERCREEZITER

KL £ Il HEH Rl PN N8| U B A

T (km?) 66.2 90.7 218.2 202.3 165.8 139.9 1905
FUEE 2 0.06 0.08 0.20 0.19 0.15 0.13 0.18

VA T (h) - 1 15 25 3 3 4

3.2. HEABIELE
WL 1997~2021 252 FHIR IR SR I I 1) 29 3758 MR it /K R M FE Ak [ 18], 3£ H 21 37K BERE NI ZREEA, 8
UK AR AEE AR o
1) [P ab e
B+ GRU MIZ8 % #4lt B 1c42heE, RIL R E 2 FEIL i 18] . AN Rl o N R 50 AT R P A A B
X, (t)=R (t-7) ©)
b X (4) A% | DR t B RDID AL B a0 N R PP, P (t) 58 T SRR I B &,
T, AR RIS (], BARRUE R 1 Brs. A0S i Y = Ao X a2 st T & 7RI (8] R sl 1R D,
T8 0 SR PR A 7 oK
2) EHHEaE
IR KT R S E M U ER T RNEN, HZATAR, BREEMN B BT ERES, NmiE
AR T g Y TR EL[19]. KA K. C. Luk 252238 11 A 201 3E 47 55 e
X (t)=alogy, (x(t)+b) (@)
AP x () HVIESEE, X () NEBENME: a. b NS,
3) FriEAL AL
R N B FE N B (CRAL: mm) R ECRAL: m3s) 2 EdE . N T T M2, T B S s T btk b
., RHA(B)BHAT .
X (1) =(x(t)- u)/o ®
A x(t) brHEL Z BT ROEE . 1 NFSIBME: o AFFIARHER: X (t) brdEf 2 G B8 . PAA A
M, VENIRBIEHE M AIG AT, NS RISehR I &, RIS, s BT T R AL
x(t)=X (t)o+u ©)
3.3. =82
PP EZE 6 N Y ik AR B 4 RN B RN o B L o B AR s e = A N, o L S A R A
I GRU MIZE TR AETY, 5] 4 ARETRIZER,
BINE A
X, (t) = {alogy [ 4P, (t=7,)+b |-y } [, i =1.2-,6
x7(t)=[Qr ('[—l)—,uq]/aq (10)
X (1) =[ X, (1), X, (1), X, ()]

X: a=05. b=1; 4,758 6 DTS P ICHAEL L 1 BUE);  wy N § ADHESE RS 511

DOI: 10.12677/jwrr.2025.146063 581 TK BRI 5T


https://doi.org/10.12677/jwrr.2025.146063

L XIS, GRU A1 28 I 28 33k 7K P A5 AU A

i‘ﬁﬁ)\}zgl‘ : 2'j Pj (t_TJ)7 j:1’27‘ . '76 Q(t'l)

- h L h, AV4 h h a
GRUZ GRU, = GRU, ~ GRU; = -+ = GRUs
L Q2 abl As
AR FC,  FC, FC; --- FCy
aL

dropout/Z Dropout

|
W= 00

Bl 4. WX GRU #Z ML K iR R B4

i oy ANEFEF PR BLARHERS s g, RS SR B RE P IIME S o, AT RE P BUXT B b e
s Pj(t Tj)jji{ﬁk{ifh:éfi/\ﬂ?%iﬁ B Q (t—-1) AulFILEEET 1 h & Q, (t-1): X (t) AL ZET
KEFR AL GRU J2 i N5 BAERE .

GRU ZA =

z(t)=o[W,X t+WhZh ~1)+b, ]

r(t)=o[W, X (t)+W, h(t-1)+b, ]

h(t) = tanh {W, X (t)+W, [ (t)© h(t-1)]+b} (11)
h(t)=[1-z(t)]oh(t-1)+z(t) 0 A(t)

£t Z], GRU EHITHMmAEEEHE: O t-11 %] GRU Hock i i 5 MRS B4 h(t-1); @
LT SR X (1) . S EH TS EE ARG, B ORER S B R R EBOE RKITTRE R, FFRE X
TG B AT I [0 48 28 A 2805 s BB, SO S BCE T, 2t Tt =24 i 2 i LK SCas RS 2 h(t)
ERE A
Y (t)=a( Zn: Wykh(k)+bykj (12)
k

=t-n

KA W, 5 by, 705000 B8 S R BB R B Al B RS sy, (t) R A i 2R A0 t pof i, S
GRU }:'$7EE1?ET7IJEI’JIS%5§W(?§%EB$ h(k) £ZMEIZHIEHRT: o NEIEREL.

NHRE AR (32 Ak B 1 PR AR X G LA KUK, o 434 4% 2 33847 Dropout fLACEE, AFFIH 7N 10%. 1F
dropout JZH1 1% & 0 A1 1 0k 10 x 1 BENLECERE, DM IIREER, HAFKN:

Y(t)= dropout{g i (t)} (13)
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R Y () MBS

fnth 2 A
Q(t)=0o,Y (t)+ 4, (14)
t I Z IR A Q (t) v i )2 bt AL A 2
34. BYRE

FEBR I GRid FE v, BB A F A GRU JZ 5 70 HOR I 26 35 AR B @ 3 v 5045 B I ZRRE AR 21 37tk s Y
Gt E Y TR AR ZE RMSE [T 2L U035 2 Firos » [ B 4 ) = 4 oy o 1) 5 — 4R S5 (B 2 14 6. B 2% 2] %< X 0.01.

MR 2 DL =R 5 M e EZRIE] 6 ML 7E GRU JZ Bt 32, MZEIEAAECN 100 KT
T, FERNTTRE. Bk, GRU M2 K TARASIAY (1184 2215 DL 5E il o

%< 2. I°[E GRU BB THFMLZE R HIE R TIZR#FAR RMSE HER

B2 )2 FotH(Hidden units)

RMSE
8 16 32 64 128 256
50 105.8 98.6 96.8 91.5 90.1 91.7
100 94.7 90.7 85.2 90.5 94.3 96.6
150 94.5 91.4 92.9 95.1 100.8 98.6
W £ 1% AR H (epochs)
200 92.5 96.5 93.0 104.8 106.2 106.9
250 93.6 94.2 93.8 109.3 108.4 106.6
300 94.8 106.6 102.7 106.2 105.2 104.5
110
105
100 3 11'0'0:0‘ SAARN 77775
m «}Q“‘::‘:'z"", 23S ’711525‘:'0,
2. N
I, NSz XN
S
90 NS 8K
g
772
85 Z
80
8 300
Hidden units 256 50 Epochs
5. RMSE B GRU 2 8 ST S M4k (R i BT 1k = 4 phE (&)
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300
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[# 6. RMSE [ GRU BB T HFMEIE R BT FELE

3.5. B

KATIE 8 it AT REXHE A BEAT I, 45 B KR R Bk R LR 18T, VEILIE 7. AR A e I HEkE 52 PRBP
BUKTEA[21]5 GRU BEARIHEATRI L. 4% 3 PRI R IR ZE TR, & 4 WBIERERZD TR,

MK TR AR, 4 3 Bk “2019-07-05” /K 2T BIMIx 1R % 0 13.6%5, HAx 7 it K 2%
ZESLE 100 LA, BT VKRR P B AR R 22 1 PRBP #5824/, GRU YT ) 8 it /K 4 A 280 REOK T
0.920, #jtt PRBP i, KH] GRU FAN itk & f AL et B U, BWRE FLRENS A AL HR K
AR EEEY.

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00
T T T T T T

=7

— S
- - T

0 | | | I ) ]
00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00
06/13 06/13 06/13 06/13 06/14 06/14 06/14 06/14 06/15 06/15

1 L 1

(@) “1998-06-14” kK
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1 ! T

A

0 | | | | | | | L]
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(b) “2003:06-25” Htsk
1(%)3:00 00:00  06:00 12:00 18:00  00:00  06:00 12:00 18:00  00:00  06:00
1

P(mm)

600
2400 -
£
o]
200 -
0 1 | | | | | | \H{“‘Fﬂ
18:00  00:00  06:00 12:00 1800  00:00  06:00 12:00  18:00  00:00  06:00
06/13  06/14  06/14 06/14  06/14 06/15 06/15 06/15 06/15 06/16  06/16
(c) “2006-06-14” Wik
00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
0 T 1 1 1 1 1
E
E
T20-
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- - T g
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0 | | | | ] E‘J‘ |lﬂ
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(d) “2008:07-19” #tsk
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(e) “2019-07-05” kK
og:oo 06:00  12:00  18:00  00:00  06:00  12:00  18:00  00:00  06:00  12:00
T T T 1
)
£10-
&

0 L I I I I I I I
00:00  06:00  12:00  18:00  00:00  06:00  12:00  18:00  00:00  06:00  12:00
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(f) “2019-07-09” ¥tk
08:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
i 1

| T |_|_|—"\
E)
E20-
Ay
0 O B
1500 \ — SE
) - - TR
<1000 -
*
£
o4
500 -

0 | | | | o ;IS
00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
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(9) “2021-06-28” itk
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18:00 00:00 06:00

12:00 18:00 00:00

0 I ! I ! | | I | J IR ]
00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
06/30  06/30 06/30 06/30 07/01 07/01 07/01 07/01 07/02 07/02 07/02 07/02 07/03

(h) “2021-06-30” #tsk
B 7. S LiFRE 8 ik FiiRid iz
F 3. 8 WK RELREFTIRIRE ST REAL: m¥s, %)

GRU f&%Y PRBP f# 7!
I A M AQ Tt FE AQ / Quy MEERE AQ MEIEFE AQ / Quy,
IS IN -] Pl mKE PHE wAE CPME RKE CFIE NoE
1998-06-14 267 64.3 311 6.7 0.966  —273 74.2 68.0 12.6 0.941
2003-06-25 83 135 -30.9 9.1 0.958 103 15.7 54.6 10.8 0.942
2006-06-14 -81 115 21.7 4.6 0.954 -97 14.9 -40.8 9.6 0.939
2008-07-19 -96 32.3 —26.2 5.1 0.972 167 355 38.4 7.1 0.964
2019-07-05 203 36.2 476 13.6 0.928  —205 41.4 54.9 17.1 0.905
2019-07-09 98 24.7 215 3.8 0.987  —102 34.0 -34.6 5.6 0.974
2021-06-28 -164 29.6 -31.1 7.6 0.933 —182 38.6 —65.8 114 0.877
2021-06-30 -157 53.5 -32.1 5.5 0.937 —154 64.6 62.8 11.7 0.918
#ik: AQ= Qu = Que ©
= 4. 8 IHGHIER ETIRIRE ST R(BAL: m¥s, %, hour: min)
P[] FRIER Quy GRU B PREP L
Qune AQ AQ/Quy ATy Quune AQ AQ/Quy ATy
1998-06-14 F0g 3080 3178 98 3.20 0:36 3017 -63 -2.00 0:36
1998-06-14 R 2710 2718 8 0.30 0:00 2551 -159 -5.90 1:00
2003-06-25 g 797 829 32 4.10 —0:24 806 9 1.20 -0:24
2006-06-14 B 25 737 779 42 5.70 1:00 730 =7 -1.00 1:00
2008-07-19 F g 2172 2111 —61 —2.80 0:00 2211 39 1.80 1:00
2019-07-05 FUg 1830 1968 138 7.50 0:20 1654 -176 -9.60 0:40
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2019-07-05 R 798 793 -5 -0.60 0:00 774 —24 -3.00 2:00
2019-07-09 T 2770 2711 -59 -2.10 -0:20 2755 -15 -0.50 0:40
2021-06-28 Tl 1700 1805 105 6.20 0:45 1618 -82 ~4.80 0:45
2021-06-28 R 938 888 -50 -5.30 1:00 833 -105 -11.20 1:00
2021-06-30 FUE 1237 1188 -49 -4.00 0:20 1251 14 1.20 -1:40
2021-06-30 TR 1150 1156 6 0.50 0:15 1007 -143 -12.50 0:15

FEIE - - - 54.4 3.53 0:25 - 0:27 4.56 0:55

Bk AT, =T — T » BUE AT NS IEPRLOE T2

MR SRR G, R 4 WA, 8 itk it IR S 200 1R 228 AR BV, 3B N 54.4m3s, S RAEA
138 m3/s ( “2019-07-09” ti); FLAHXT IR ZE W/, ~FIME )y 3.53%, HAKIHN 6.9% ( “2019-07-09” #ti%).
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