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摘  要 

运用具有更新门和重置门控制的深度学习循环神经网络(GRU)技术，选取1997~2021年期间崇阳溪上游流域29
场降雨径流过程，其中21场过程作为训练集，以上游岚谷等6个雨量站逐时雨量和下游控制断面武夷山水文站

前期流量为输入，以该断面相应流量为输出，依据RMSE最小方法确定网络隐含层单元数和迭代轮数，在GRU层
之后增加全连接层，并对其进行Dropout化处理，构建GRU神经网络预报模型。采用该模型对余下的8场洪水进

行测试，并与共轭梯度PRPB神经网络模型结果进行对比。结果表明，GRU模型预测效果更好，其洪水过程预测

误差均小于PRPB模型，在洪峰流量预测精度方面总体上略高于PRBP模型，模型的纳什效率系数也比后者高，

因此适合用于山区流域的洪水预报。 
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Abstract 
The deep learning recurrent neural network technology with renewal gate and reset gate control (GRU) was 
used to select 29 rainfall runoff processes in the upper reaches of Chongyangxi River from 1997 to 2021, 
among which 21 floods were selected as the training set. Hourly precipitation records from six upstream 
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rain gauges—Langu among them—together with the antecedent discharge measured at the downstream 
Wuyishan station were employed as model inputs. Taking the corresponding flow of this section as the model 
output, the root-mean-square error minimum criterion was used to analyze the number of hidden layer units 
and the number of network iteration rounds. At the same time, a full-connection layer was set after the GRU 
layer and the full-connection layer was processed by Dropout to construct a GRU neural network model 
for mountain watershed. The model was used to test the remaining 8 floods and compared with the artifi-
cial neural network PRPB model. The results show that the GRU model performs better in prediction, and 
its flood process prediction error is smaller than that of PRPB model, and the accuracy of flood peak flow 
prediction is slightly higher than that of PRBP model. The Nash efficiency coefficient of the model is also 
higher than that of the latter, so it is suitable for flood forecasting in mountain basins. 
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1. 引言 

在山区流域的防洪减灾工作中，洪水预报发挥着极为重要的作用；对于防汛部门而言，迅速而准确的洪水预

报，是防汛预警和调度的关键依据。除了采用常规方法外，构建循环神经网络(Recurrent Neural Networks, RNN)用
于洪水预报[1]，可以满足上述需求。近年来，循环神经网络因其设计结构适合模拟时间序列相关数据，被广泛用

于径流预测研究[2]。然而，普通 RNN 模型在学习长时间序列时，存在梯度消失问题。为此，Cho 等人提出了门控

制循环单元神经网络(Gated Recurrent Unit, GRU) [3]。在水文预报领域，基于 GRU 的研究正成为热点。GRU 是一

种对长短期记忆网络(Long Short-Term Memory, LSTM)变体的优化[4]：其将 LSTM 中的遗忘门与输入门进行合并，

形成单一的更新门，同时保留重置门；网络没有设置记忆状态变量，而是将输出结果作为记忆状态不断向后循环

传递。相较于 LSTM 网络，GRU 网络能在达到同样效果的基础上降低训练难度，提升模型效率[5]。 
近年来，已有研究从正则化约束[6]、记忆–滞后协同[7]到多预处理对比[8]三个层面持续拓展 GRU 的适用

边界。还有许多学者在智能算法耦合层面，例如：以改进灰狼算法(IGWO)自动搜索 GRU 超参数[9]、以改进麻

雀搜索算法(ISSA)同步优化 CNN-LSTM 与 GRU 双支路[10]等，展示了“群体智能 + 混合结构”的巨大潜力。

区域验证方面，顾逸[11]简化了 GRU 结构提出的 Simple-LSTM 把长江上游中长期预报效率提高 30%；De Melo 
G 等[12]证实 GRU 与 LSTM 精度相当却省时一半；Gao 等[13]采用 GRU 和 LSTM 两种递归网络对沙溪渔潭站

短期径流进行预测，对于 3 h 预见期将洪峰误差压低 5%；郭玉雪等[14]发现 GRU 对舟山台风非平稳入流预测，

其纳什系数仍保持 0.90；Khatun 等[15]采用 CNN-GRU 模型在印度马哈纳迪河季风高峰流量模拟中精度提升

15%。综上，GRU 已沿“正则化–杂交–混合”路径在多流域、多尺度验证其稳健性，为崇阳溪上游山区流域

应用奠定方法论基础。 
考虑到前人的研究多聚焦于模型参数率定、模型在平原区或丘陵区流域的应用，GRU 模型在山区源头流域

洪水过程模拟研究中应用实例不多，论文以崇阳溪上游流域为例，利用 29 场暴雨洪水过程，构建以 6 个雨量站

逐时降水与武夷山水文站前期流量为输入、未来相应流量为输出的山区源头流域 GRU 网络洪水预报模型；并与

传统 PRBP 模型进行对比，验证其在洪峰流量、峰现时间、洪水过程预报误差上的优势，为山区源头流域提供

“仅依赖雨量及流量数据”的数据驱动洪水预报模型。该模型功能简单适用，运算速度快，泛化能力较好，可
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以提升基层防御洪水的时效性与可操作性，为流域防洪减灾工作提供服务。 

2. GRU 网络结构和算法 

2.1. GRU 基本构架 

与标准 RNN 相比，GRU 通过引入门控机制，能够更有效地捕捉长距离依赖关系，提升模型的表现和训练

效果[16]。GRU 网络整体结构见图 1： 
 

 

图 1. GRU 神经网络整体结构 

2.2. 门控制循环单元结构及其算法 

图 2 为 GRU 门控制循环单元内部结构，其中重置门和更新门是 GRU 中的关键组件。重置门决定过去信息

对当前状态的影响程度，而更新门控制了新信息和旧信息的融合程度。借助其门控机制的协同作用，GRU 能够

高效捕捉序列数据中的长期依赖关系。在模型架构上，GRU 相较于 LSTM 更为简洁，这使得其在训练过程中展

现出更快的速度[17]。 
 

 

图 2. GRU 门控制循环单元内部结构 
 

首先，单元将通过当前时间步输入信息 tx 和前一时间步单元输出信息 1t−h 来获取两个门结构的控制状态。

GRU 网络中的更新门负责对先前存储的信息进行控制，即决定模型 1t − 时刻和 t 时刻有多少信息继续传递至

1t + 时刻。 tz 为更新门的控制信息矩阵，其计算式如下： 

 ( )1,t z t t zσ − = + z W h x b  (1) 

式中：σ 为 Sigmoid 激活函数； zW 为更新门权值矩阵； zb 为更新门偏置矩阵。 

https://doi.org/10.12677/jwrr.2025.146063


山区流域 GRU 神经网络洪水预报模型研究 
 

 

DOI: 10.12677/jwrr.2025.146063 580 水资源研究 
 

GRU 的另一个门结构称为重置门，它的主要功能在于调控当前输入信息与之前状态之间的关联性。其状态

决定了先前状态对当前状态更新过程中的影响程度。 tr 为重置门的控制信息矩阵，其计算式如下： 

 ( )1,t r t t rσ − = + r W h x b  (2) 

式中： rW 为重置门权值矩阵； rb 为重置门偏置矩阵。 
网络计算出两个信息矩阵后，通过信息矩阵 tr 来重置前一时间步的单元隐含状态 1t−h ，然后和当前时间步 tx

相衔接，通过状态激活函数将数值范围调整至[−1, 1]： 

 ( )1tanh ,t h t t t h− = + h W r h x b

  (3) 

式中： hW 为权值矩阵； hb 为偏置矩阵。这里得到的 th 为候选隐状态矩阵，负责记录 t 时的“单元状态”。 
“更新记忆”阶段中，更新门 tz 控制了当前状态 th 是如何结合过去的状态 1t−h 和候选状态 th 的： 

 ( ) 1t t t t t−= − +h z h z h 1  (4) 

式中： t tz h 则负责记录候选隐状态矩阵 th 中对网络学习产生正面影响的部分内容，由更新门控制矩阵 tz 负责

筛选。最终得到的 th 将通过输出层函数转化为实际需求的模型预测结果 ty 。计算式如下： 

 ( )t y t yf= +y W h b  (5) 

式中： yW 为输出层权值矩阵； yb 为输出层偏置矩阵。 

3. 山区流域 GRU 神经网络洪水预报模型构建 

3.1. 流域概况 

选择崇阳溪源头(上游)流域进行研究，其控制流域面积 1078 km2。利用 Thiessen polygon 法对流域进行子单

元划分，推求各子单元面积权重，同时分析各单元净雨到武夷山站的汇流时间，详见图 3、表 1。 
 

 

图 3. 崇阳溪上游流域水系图 
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表 1. 各子流域单元面积权重及汇流时间统计表 

水文站点 武夷山 洋庄 吴边 大安 坑口 岭阳 岚谷 

面积(km2) 66.2 90.7 218.2 202.3 165.8 139.9 190.5 

权重 λ 0.06 0.08 0.20 0.19 0.15 0.13 0.18 

汇流时间(h) - 1 1.5 2.5 3 3 4 

3.2. 样本数据处理 

论文以 1997~2021 年崇阳溪源头流域的 29 场暴雨洪水过程为基础[18]，选取 21 场洪水资料为训练样本，8
次洪水为测试样本。 

1) 同步化处理 
由于 GRU 网络对数据具有记忆功能，因此需要考虑汇流时间、将不同站点雨量数据进行同步化处理。 

 ( ) ( )i i iX t P t τ= −  (6) 

式中： ( )iX t 为第 i 个雨量站 t 时段经同步化处理后对应的模型输入序列， ( )iP t 为第 i 个雨量站 t 时段的雨量，

iτ 为相应的汇流时间，具体取值如表 1 所示。经处理后的雨量数据对武夷山站而言在时间尺度上实现了同步，

适应实际预报的需求。 
2) 零数据处理 
流域退水过程中会有相当数量的零输入降雨，若不进行处理，将导致模型中出现相互矛盾的信息，从而造

成模型输出的混乱[19]。采用 K. C. Luk 等学者的公式[20]进行转换： 

 ( ) ( )( )10logX t a x t b= +  (7) 

式中： ( )x t 为初始数据， ( )X t 为去零化后的数据；a、b 为可变参量。 
3) 标准化处理 
模型输入包括雨量(单位：mm)和流量(单位：m3/s)两类数据。为了便于网络学习，需要对数据进行标准化处

理。采用式(8)进行转换： 

 ( ) ( )( )X t x t µ σ= −  (8) 

式中： ( )x t 为标准化之前的数据；µ 为序列均值；σ 为序列标准差； ( )X t 为标准化之后的数据。以此构建输入

向量，作为驱动数据输入循环网络模型。为得到实际预测流量，训练好网络后，输出的结果需进行反标准化： 

 ( ) ( )x t X t σ µ= +  (9) 

3.3. 模型构建 

选择洋庄等 6 个雨量站的逐时降雨量和武夷山站前期流量组成向量为输入，武夷山站后期对应流量为输出，

构建 GRU 网络预报模型，图 4 为模型结构。 
输入层公式： 

 

( ) ( ){ }
( ) ( )

( ) ( ) ( ) ( )

10

7

T
1 2 7

log , 1, 2, ,6

1

, , ,

j j j j pj pj

r q q

X t a P t b j

X t Q t

t X t X t X t

λ τ µ σ

µ σ

  = − + − = 
  = − −  

 =   

X





 (10) 

式中： 0.5a = 、 1b = ； jλ 分别为 6 个子流域单元面积权重(见表 1 取值)； pjµ 为第 j 个雨量站雨量过程序列均 
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图 4. 山区流域 GRU 神经网络洪水预报模型结构 
 
值、 pjσ 为雨量过程序列对应的标准差； qµ 为武夷山站实测流量过程序列均值、 qσ 为流量过程序列对应的标准

差； ( )j jP t τ− 为上游洋庄等 6 个雨量站逐时雨量； ( )1rQ t − 为武夷山站前 1 h 流量 ( )1rQ t − ； ( )tX 为经该层预

处理后转化为 GRU 层的输入信息矩阵。 
GRU 层公式： 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( )

1

1

tanh 1

1

xz hz z

xz hr r

x h

t t t

t t t

t t t t

t t t t t

σ

σ

 = + − +  
 = + − +  


= + − +   


= − − +   

z W X W h b

r W X W h b

h W X W r h b

h z h z h







 1

 (11) 

在 t 时刻，GRU 层单元的输入信息包括：① 1t − 时刻 GRU 单元输出的处理后的流量信息矩阵 ( )1t −h ；② 
当前输入信息矩阵 ( )tX 。通过更新门与重置门处理后，模型得以筛除导致损失函数增大的冗余信息，并保留对

预测精度具有正向增益的有效信息；随后，单元状态完成更新，进而输出当前时刻武夷山水文站的流量信息 ( )th 。 
全连接层公式： 

 ( ) ( )
n

i yk yk
k t n

y t k bσ
= −

 = + 
 
∑ W h  (12) 

式中： ykW 与 ykb 分别对应整合过程中权值矩阵和偏置值矩阵； ( )iy t 表示全连接层在时间步 t 的输出，其数值由

GRU 层单元在该时刻的隐藏状态矩阵 ( )kh 经线性运算后获得；σ 为激活函数。 
为提高模型的泛化能力并降低网络过拟合风险，对全连接层进行 Dropout 化处理，抛弃因子设为 10%。在

dropout 层中设置 0 和 1 组成 10 × 1 随机数矩阵，以抛弃冗余信息，其公式为： 

 ( ) ( )
10

1
dropout i

i
Y t y t

=

 =   
∑  (13) 
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式中： ( )Y t 为模型输出信息。 
输出层公式： 

 ( ) ( )q qQ t Y tσ µ= +  (14) 

t 时刻预测流量值 ( )Q t 由输出层去标准化得到。 

3.4. 参数率定 

在模型训练过程中，设置不同的 GRU 层单元数和网络迭代次数并通过计算得到训练样本 21 场洪水模型

输出值均方根误差 RMSE 的平均值如表 2所示，同时绘制三维曲面图 5、二维等值线图 6。模型学习率取 0.01。 
通过表 2 以及三维曲面图 5 和二维等值线图 6 可知，在 GRU 层单元数为 32，网络迭代轮数为 100 的情况

下，存在最小均方误差。至此，GRU 网络洪水预报模型的构建得以完成。 
 
表 2. 不同 GRU 层单元数和网络迭代轮数情况下训练样本 RMSE 均值表 

RMSE 
隐含层单元数(Hidden units) 

8 16 32 64 128 256 

网络迭代次数(epochs) 

50 105.8 98.6 96.8 91.5 90.1 91.7 

100 94.7 90.7 85.2 90.5 94.3 96.6 

150 94.5 91.4 92.9 95.1 100.8 98.6 

200 92.5 96.5 93.0 104.8 106.2 106.9 

250 93.6 94.2 93.8 109.3 108.4 106.6 

300 94.8 106.6 102.7 106.2 105.2 104.5 

 

 

图 5. RMSE 随 GRU 层单元数和网络迭代轮数变化三维曲面图 
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图 6. RMSE 随 GRU 层单元数和网络迭代轮数变化等值线图 

3.5. 模型测试 

采用流域 8 场洪水过程对模型进行测试，得到洪水流量预报过程线图，详见图 7。同时构建共轭梯度 PRBP
洪水预测模型[21]与 GRU 模型进行对比。表 3 为洪水流量过程预报误差分析表，表 4 为洪峰流量误差分析表。 

从洪水预报过程来看，表 3 中除“2019·07·05”洪水过程平均相对误差为 13.6%外，其余 7 场洪水过程的误

差均在 10%以内，所有洪水过程平均相对误差均比 PRBP 模型小。GRU 模型预报的 8 场洪水纳什效率系数大于

0.920，均比 PRBP 模型高。表明 GRU 模型对洪水流量的变化展现出较高敏感性，意味着其能够有效掌握洪水

演变过程中的主要趋势。 
 

 
(a) “1998·06·14”洪水 
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(b) “2003·06·25”洪水 

 
(c) “2006·06·14”洪水 

 

(d) “2008·07·19”洪水 
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(e) “2019·07·05”洪水 

 

(f) “2019·07·09”洪水 

 
(g) “2021·06·28”洪水 
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(h) “2021·06·30”洪水 

图 7. 崇阳溪上游流域 8 场洪水预报过程线 
 

表 3. 8 场洪水流量过程预报误差分析表(单位：m3/s，%) 

时间 

GRU 模型 PRBP 模型 

流量过程 Q∆  流量过程 /Q Q∆ 实测  
NSE 

流量过程 Q∆  流量过程 /Q Q∆ 实测  
NSE 

最大值 平均值 最大值 平均值 最大值 平均值 最大值 平均值 

1998·06·14 267 64.3 31.1 6.7 0.966 −273 74.2 68.0 12.6 0.941 

2003·06·25 83 13.5 −30.9 9.1 0.958 103 15.7 54.6 10.8 0.942 

2006·06·14 −81 11.5 27.7 4.6 0.954 −97 14.9 −40.8 9.6 0.939 

2008·07·19 −96 32.3 −26.2 5.1 0.972 167 35.5 38.4 7.1 0.964 

2019·07·05 203 36.2 47.6 13.6 0.928 −205 41.4 54.9 17.1 0.905 

2019·07·09 98 24.7 21.5 3.8 0.987 −102 34.0 −34.6 5.6 0.974 

2021·06·28 −164 29.6 −31.1 7.6 0.933 −182 38.6 −65.8 11.4 0.877 

2021·06·30 −157 53.5 −32.1 5.5 0.937 −154 64.6 62.8 11.7 0.918 

备注： Q Q Q∆ = −预报 实测 。 
 
表 4. 8 场洪水洪峰流量预报误差分析表(单位：m3/s，%，hour：min) 

时间 主次峰型 Q实测  
GRU 模型 PRBP 模型 

Q预报  Q∆  /Q Q∆ 实测  T∆ 洪峰  Q预报  Q∆  /Q Q∆ 实测  T∆ 洪峰  

1998·06·14 主峰 3080 3178 98 3.20 0:36 3017 −63 −2.00 0:36 

1998·06·14 次峰 2710 2718 8 0.30 0:00 2551 −159 −5.90 1:00 

2003·06·25 主峰 797 829 32 4.10 −0:24 806 9 1.20 −0:24 

2006·06·14 主峰 737 779 42 5.70 1:00 730 −7 −1.00 1:00 

2008·07·19 主峰 2172 2111 −61 −2.80 0:00 2211 39 1.80 1:00 

2019·07·05 主峰 1830 1968 138 7.50 0:20 1654 −176 −9.60 0:40 
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续表 

2019·07·05 次峰 798 793 −5 −0.60 0:00 774 −24 −3.00 2:00 

2019·07·09 主峰 2770 2711 −59 −2.10 −0:20 2755 −15 −0.50 0:40 

2021·06·28 主峰 1700 1805 105 6.20 0:45 1618 −82 −4.80 0:45 

2021·06·28 次峰 938 888 −50 −5.30 1:00 833 −105 −11.20 1:00 

2021·06·30 主峰 1237 1188 −49 −4.00 0:20 1251 14 1.20 −1:40 

2021·06·30 次峰 1150 1156 6 0.50 0:15 1007 −143 −12.50 0:15 

平均值 - - - 54.4 3.53 0:25 - 0:27 4.56 0:55 

备注： T T T∆ = −预报 实测洪峰 ，最后一行为各指标绝对值的平均值。 
 

从预报洪峰流量来看，由表 4 可知，8 场洪水的洪峰流量绝对误差总体较小，平均值为 54.4 m3/s，最大值为

138 m3/s (“2019·07·09”洪峰)；其相对误差也较小，平均值为 3.53%，最大值为 6.9% (“2019·07·09”洪峰)。
PRBP 模型预测的洪峰流量的误差也较小。总体上 GRU 模型在洪峰流量预测精度方面略高于 PRBP 模型。 

洪峰出现时间方面，GRU 模型平均误差为 25 min，仅为 PRBP 模型(55 min)的 45%，二者虽均在许可误差

之内，但 GRU 模型误差相比较更小，稳定性更佳。两模型均呈“总体偏晚”的倾向，但 GRU 偏差分布更集中，

优于 PRBP。 

4. 结语 

通过选取具有可靠性、代表性、一致性的训练和测试样本，并结合崇阳溪源头山区流域实际情况拟定网络

结构，依据均方根误差 RMSE 最小方法确定 GRU 网络迭代轮数为 100、隐含层单元数为 32，紧接该层之后增

加一个全连接层，然后对其进行 Dropout 化处理，建立基于 GRU 网络的洪水预报模型。同时构建基于 PRBP 的

预报模型进行比较。 
1) GRU 与 PRBP 模型的预报结果表明，两种模型的精度均符合规范要求，相对来说具有更新门和重置门深

度学习功能的 GRU 模型预测效果更好，模型的纳什效率系数比 PRBP 模型高；其洪水过程预测误差均小于 PRBP
模型，在洪峰流量及峰现时间的预测精度方面总体上略高于后者，因此可以满足山区源头流域的洪水预报的需

求。 
2) 在 GRU 层之后增加全连接层，并对其进行 Dropout 化处理，有利于优化 GRU 隐含层单元数和网络迭代

轮数，同时可以提高模型的泛化能力并降低网络过拟合风险。 
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