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Abstract

In order to improve the accuracy of monthly runoff prediction and reduce the error caused by the nonlin-
earity, non-stationarity and high noise of series, this paper proposes a monthly runoff prediction method
based on variational mode decomposition and deep learning, optimized search algorithm (SSA-VMD-CNN-
LSTM). The method first decomposes the original runoff series into several intrinsic mode functions (IMF)
by VMD, and each sub-modal component is reconstructed into a two-dimensional feature. Subsequently, it
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is input into the convolutional neural network and long-short term memory network (CNN-LSTM) opti-
mized by sparrow search algorithm (SSA). Finally, the complete monthly runoff prediction sequence is
obtained by superimposing the prediction results of each sub-modal. The results of the study show that
the SSA-MD-CNN-LSTM model has higher accuracy in monthly runoff prediction, and its prediction effect
is better than LSTM, CNN-LSTM and VMD-CNN-LSTM models. The model can provide effective reference for
the monthly runoff prediction of reservoirs.
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B I AR (EMD) FIAZ 0 AR 73 i (VMD) S, A 18 20T TSGR 1 IR L6 VI 24 [8] [9]. Blhn, B5HEE 45 [10]
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