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Abstract

Steel wire ropes, critical load-bearing components in industries such as mining, construction, and
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transportation, significantly impact production safety and economic efficiency. Prolonged exposure
to harsh conditions makes them susceptible to damage like wire breakage, wear, and corrosion, which,
if undetected, may lead to severe safety accidents. This paper systematically reviews the research
progress in non-destructive testing technologies for steel wire ropes. It begins by outlining the re-
search background and global development status, clarifying the technological evolution. Next, it
analyzes the primary damage types and their causes, providing a theoretical basis for detection re-
quirements. Subsequently, it evaluates the principles, advantages, limitations, and recent advance-
ments of mainstream NDT methods, including electromagnetic, machine vision, and acoustic emis-
sion detection. Furthermore, it explores the potential of emerging technologies such as artificial in-
telligence, multi-sensor fusion, and digital twins in enhancing steel wire rope NDT. Finally, it sum-
marizes current technical challenges and prospects for future development directions, offering in-
sights for innovative research and engineering applications.
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Figure 1. Types and detection methods of steel wire rope damage
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Figure 2. Flow chart of electromagnetic testing method
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