Published Online November 2025 in Hans. https://www.hanspub.org/journal/me https://doi.org/10.12677/me.2025.136136

天然气净化系统泄漏事故风险研究

高懿真, 亢志雄, 石莲红

重庆科技大学安全科学与工程学院, 重庆

收稿日期: 2025年9月23日; 录用日期: 2025年10月21日; 发布日期: 2025年11月10日

摘要

天然气,作为低碳能源的一种,以其清洁和高效特性而备受青睐。但由于天然气净化系统工艺复杂,加之天然气本身具有易燃易爆的特性,净化过程中极易发生安全事故。为深入研究天然气净化系统事故致因因素,提升事故预防能力,运用HFACS框架事故致因模型与轨迹交叉论,对近年来由净化天然气所引发的事故报告进行分析,以此建立天然气净化系统的致因因素体系,最后通过Amos得到各致因因素间以及各致因因素与事故间的关联性。研究结果表明,天然气净化系统泄漏事故致因分析突破传统局限,构建多维度致因体系以全面覆盖风险;揭示了各致因因素间以及各致因因素与事故间的关联性,基于研究结果,本文提出针对性事故预防策略,以期为天然气生产企业提供相关参考。

关键词

HFACS, 轨迹交叉论, 天然气净化, 事故致因

Study on the Risk of Leakage Accidents in Natural Gas Purification Systems

Yizhen Gao, Zhixiong Kang, Lianhong Shi

School of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing

Received: September 23, 2025; accepted: October 21, 2025; published: November 10, 2025

Abstract

As a type of low-carbon energy, natural gas is favored for its clean and efficient characteristics. However, due to the complex process of the natural gas purification system and the flammable and explosive nature of natural gas itself, safety accidents are highly likely to occur during the purification process. To conduct in-depth research on the causal factors of accidents in natural gas purification systems and improve accident prevention capabilities, this study applied the HFACS (Human Factors Analysis and Classification System) framework accident causation model and the Trajectory

文章引用: 高懿真, 亢志雄, 石莲红. 天然气净化系统泄漏事故风险研究[J]. 矿山工程, 2025, 13(6): 1220-1230. POI: 10.12677/me.2025.136136

Intersection Theory to analyze accident reports caused by natural gas purification in recent years, thereby establishing a causation factor system for natural gas purification systems. Finally, the correlations between various causal factors and between each causal factor and accidents were obtained using Amos. The research results show that the analysis of causal factors for leakage accidents in natural gas purification systems breaks through traditional limitations and constructs a multi-dimensional causal factor system to fully cover risks; it also reveals the correlations between various causal factors and between each causal factor and accidents. Based on the research results, this paper proposes targeted accident prevention strategies to provide relevant references for natural gas production enterprises.

Keywords

HFACS, Trajectory Intersection Theory, Natural Gas Purification, Accident Causation

Copyright © 2025 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

在全球能源结构向低碳化转型的进程中,天然气凭借清洁、高效的突出优势,成为支撑能源供应安全与"双碳"目标实现的关键能源品类。天然气开采后需通过净化系统完成脱硫、脱水、脱酸等工艺处理,方可满足后续输送与利用的质量标准,因此净化系统是天然气产业链中衔接上游开采与下游应用的核心环节。然而,天然气净化系统工艺流程复杂,涉及多类高压设备、精密仪表及易燃易爆的天然气介质,且作业环境常伴随腐蚀性物质与连续化生产要求,导致系统在运行过程中面临较高的泄漏事故风险,一旦发生泄漏,不仅可能引发爆炸、火灾等恶性安全事件,造成人员伤亡与设备损毁,还会中断天然气供应链条,加剧环境污染,对行业经济发展与区域公共安全构成双重威胁。

天然气作为保障能源安全与推动能源转型的关键品类,其全链条运行中的事故风险防控始终是学界关注的核心议题,相关研究已在多维度形成阶段性成果。在天然气安全研究层面,学者们围绕不同场景与分析工具展开探索: 亓文广[1]基于事件树分析法聚焦天然气长输管道泄漏风险,明确管道腐蚀、第三方破坏为物的不安全状态核心诱因,却未涉及净化系统工艺特殊性;张若昕等人[2]深化轨迹交叉论在事故预防中的应用,王玉等[3]、陈秀珍等[4]及张佳慧等人[5]则以人因分析与分类系统(HFACS)为基础,分别开展危化品罐车运输事故人因机理研究、构建塔吊项升事故人因分析模型、建立化工生产事故 HFACS 改进模型并识别关键致因路径,Qi Haonan 等人[6]还通过修正 HFACS 明确建筑施工场景致因因素分布与因果路径。在结构方程模型应用层面,童雅婷等[7]从人-物-环境-管理维度构建化油库区火灾风险模型,证实人的因素影响最大;李红旭等人[8]则以此工具分析天然气增压集输站安全影响因素,揭示各因素与安全间的直接、间接关联及因素间相互作用关系。

现有天然气安全研究虽有理论方法基础,但聚焦净化系统的专项研究不足现有研究大多关注输气管 道、储气设施等,对其工艺特殊性引发的事故致因分析不深,单一理论难覆盖"人、机、环、管"多要素 耦合风险。HFACS 框架可系统拆解人为影响因素形成层级分析体系,轨迹交叉论能揭示人、物不安全状态时空耦合机制,二者协同可双重覆盖净化系统事故致因、补单一理论局限。鉴于此,本研究以天然气净化系统泄漏事故为对象,整合两理论优势,梳理剖析国内外相关事故报告,提炼核心致因并构建体系,再用 Amos 软件量化因素间及因素与事故的关联性,为优化净化系统安全防控策略、提升事故预防应急能力提供依据参考。

2. 数据来源及研究框架

2.1. 数据处理

本文收集了国内数据库(国家应急管理部"安全生产事故统计分析系统"、中国化学品安全协会"化工安全事故案例库")和国外数据库(美国化学安全与危害调查委员会(US CSB)事故数据库、欧洲重大事故报告系统(eMARS))中 2014~2023 年间 89 起天然气净化事故报告作为数据源。涵盖中国、美国、德国、澳大利亚等 12 个国家的天然气净化厂(其中国内案例 52 起,国外案例 37 起)由于事故报告中存在记录标准不统一、格式不规范的问题,导致原始数据包含大量冗余信息。为保障研究数据的可靠性与精确性,需对原始数据开展清洗与预处理工作,筛选标准具体如下:首先明确事故场景中涉及天然气净化系统核心工艺单元(脱硫、脱水、脱酸装置及配套的储罐、输送管道);其次确定事故类型为泄漏引发的事故(含泄漏后次生的爆炸、火灾),排除纯粹机械故障(如电机损坏)未导致介质泄漏的案例;同时报告需包含完整的事故经过、致因分析(人、物、环境等因素描述)及责任认定内容,排除信息残缺(如无具体操作环节、设备型号记录)的报告;最重要的是,案例应涉及不同规模企业(大型国企、中小型民营企业、外资企业),以避免样本的行业代表性偏差。预处理阶段具体操作包括:剔除报告中与不安全行为及其诱因无关的非关键信息(如事故后的媒体报道评价、非直接相关的人员背景介绍);重点保留事故描述、致因分析、责任认定三大核心模块的关键信息;最后对筛选后的信息进行结构化整合。

2.2. 研究框架

基于调研资料,统计分析天然气净化事故原因,挖掘归纳天然气净化事故的致因因素,结合 HFACS 框架事故致因模型和轨迹交叉论,建立天然气净化系统的致因因素体系,最后通过结构方程模型(SEM)探究各致因因素间及与事故的关联性,并提出了针对性的安全建议,具体流程如图 1 所示。

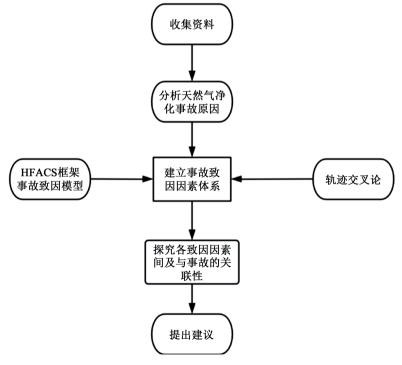


Figure 1. Technology roadmap 图 1. 技术路线图

3. 天然气净化事故致因因素分析

3.1. 致因因素体系构建

依据《企业职工伤亡事故调查分析规则》(GB6442-1986)及轨迹交叉论核心逻辑,事故直接成因明确为"物的不安全状态"与"人的不安全行为"[9],间接成因指向管理层面的制度漏洞、流程缺失等缺陷;传统事故成因分析框架据此以"人、物、管理"为核心搭建,聚焦三类因素的风险识别与管控。

但大量事故复盘显示,现有分析边界需拓展:全球极端天气频发背景下,自然灾害诱发的工业事故占比上升,地震、雷击、飓风、洪水等不仅直接损毁天然气净化系统的高压设备、精密仪表与输送管道,还可能破坏应急防护设施、扩大事故后果。这表明自然因素已成为系统安全的关键致灾因子,需纳入安全生产风险管控清单及事故成因分析核心范畴,填补传统框架"环境风险"层面的空白。

从工业安全与社会环境的关联性看,社会因素的诱发作用亦不可轻视。天然气净化系统作为能源产业链关键基础设施,其危化品储存罐区、高压输送管网、核心净化装置等,既可能成为蓄意破坏目标(如能源设施恐怖袭击,直接冲击关键部位,引发天然气泄漏、爆炸、火灾等连锁事故);同时,外部人员无意行为也可能构成隐性威胁,如周边施工误挖地下管线、无关人员误入触碰安全装置、违规翻越围栏损坏设备等。这类社会干扰因素虽多非蓄意,却可能导致系统参数异常、设备隐蔽损伤,为后续泄漏事故埋隐患,需系统纳入事故致因分析体系以实现全方位风险管控。

结合 HFACS (人因分析与分类系统)事故致因模型可见,企业文化、员工安全重视度等组织影响因素,亦是对传统致因要素的重要补充。据此,本研究在传统框架基础上,融合 HFACS 模型与轨迹交叉论核心思想,实现致因维度拓展与指标筛选: HFACS 模型核心为"组织影响、不安全监督、不安全行为前提、不安全行为"四层层级结构[10],其中"组织影响"对应"组织因素","不安全监督"对应"管理因素","不安全行为前提"与"不安全行为"共同对应"作业因素";轨迹交叉论核心思想为"人的不安全行为与物的不安全状态在时空维度交叉耦合是事故直接原因[11],环境、社会等外部因素会加速或诱发该交叉过程",其中"物的不安全状态"拆解为"物质、设备、工艺、场所因素","外部诱发因素"对应"自然、社会因素"。该模型通过多维度致因形成协同,助力构建更系统的事故成因分析体系,完善安全生产风险管控逻辑框架。

3.2. 天然气净化系统致因因素分析

通过文献研究、事故调查报告、法律法规标准以及天然气净化系统本身的事故情景模式分析,初步 筛选确定天然气净化系统的事故致因因素。挖掘的天然气净化事故致因因素见表 1。

Table 1. Contributing factors 表 1. 致因因素

类别	致因因素	类别	致因因素
	气体浓度过高		设备安装拆卸错误
MF	杂质影响		作业人员违反操作规程
	材料兼容性不好	OF	事故应急处置不当
	储罐设计制造不合理		作业人员资质不合格
EF	储罐疲劳运行		动火、检维修作业未审批
	储罐紧急切断阀失灵	GF	安全培训不到位

				
	管道焊接缺陷		安全监管不到位	_
	管道腐蚀		安全规章制度不完善	
	管道疲劳运行		安全投入不足	
	管路老化		安全检查不到位	
	阀门垫圈老化		检维修制度不落实	
	法兰变形		安全人员配备不合理	
	软管破裂	TF	安全文化薄弱	
	安全附件缺陷		责任体系模糊	
P.P.	防护装置不合格		沟通机制混乱	
EF	设备未定期检验	TF	战略目标模糊	
	防雷防电设施不全		资源保障不落实	
	安全标识不到位		组织变革	
	防火设计不符合要求		高温	
	选址规划不合理		雷雨	
LF	场所人员密度过高	DF	生物侵蚀	
	电气线路铺设不合理	DF	地质灾害	
	电气线路老化		第三方破坏	
	场所存在点火源		恐怖袭击	
DE	监测设施漏报、误报	DE.	工艺监测设施不完备	
PF	工艺设计不合理	PF	净化工艺过程失控	

4. 天然气净化"52X"致因因素结构建模

4.1. 数据采集

本研究以问卷调查作为数据收集的核心方法:在已识别的天然气净化系统事故致因因素基础上,设计调研题项并编制问卷,通过征集专家意见,获取受访者对各致因因素的重要性及其对该系统事故影响程度的评分。问卷内容分为三个部分:第一部分旨在收集受访者的基础信息;第二部分针对外源观测变量设计,采用里克特七点量表(计分范围 1~7 分)让受访者完成评分;第三部分围绕假设潜变量对因变量的影响程度设置题项,同样采用里克特七点量表进行计分。

4.2. 信效度检验

收集到的调研数据需先通过信效度检验,待确认数据合格后,方可用于后续的模型拟合分析。其中,信度分析从三个维度开展:一是外源潜变量之间的相关性,二是外源潜变量与内源潜变量的相关性,三是潜变量的整体相关性,具体分析结果详见表 2;效度分析则聚焦于结构效度,以因子分析中的 KMO 值作为核心表征指标。研究结合调查数据对各观测变量进行主成分提取(设定提取个数为 1),同时分析各因

子的累计贡献率与 KMO 值,相关结果如表 3 所示。

从信度分析结果来看,所有观测变量的克隆巴赫系数均大于 0.7, 这表明各变量间具备较强的相关性,且各观测变量能够协同体现同一研究主题;此外,问卷的整体相关系数达到 0.844,这一结果证实该量表具有良好的信度,可有效对目标变量进行衡量。

Table 2. Reliability analysis

表 2. 信度分析

潜变量	题项数	克隆巴赫系数	总克隆巴赫系数
物质因素	3	0.878	
设备因素	4	0.809	
工艺因素	4	0.937	
作业因素	4	0.789	0.044
场所因素	3	0.803	0.844
管理因素	3	0.852	
组织因素	3	0.895	
天然气净化系统事故	3	0.912	

Table 3. Validity tests

表 3. 效度检验

双		KMO 值	总 KMO 值
MF1			
MF2	物质因素	0.744	
MF3			
EF1			
EF2	设备因素	0.797	.837
EF3	以田凶系		
EF4			
PF1			.637
PF2	工艺因素	0.861	
PF3	上石四京		
PF4			
GF1			
GF2	管理因素	0.731	
GF3			

续表			
TF1			
TF2	组织因素	0.752	
TF3			
OF1			
OF2	作业因素	0.791	
OF3	11-业口系	0.791	0.791
OF4			
LF1			
LF2	场所因素	0.707	
LF3			
Y1			
Y2	天然气净化系统事故	0.758	
Y3			

信度分析结果显示,所有观测变量的克隆巴赫系数均超出 0.7 的常用阈值,这表明变量间具备较强相关性,且各观测变量能够协同体现同一研究主题;同时,问卷整体相关系数达到 0.844,该结果印证了量表信度表现优良,可对目标变量实现有效衡量。

与此同时,因子分析从两个维度开展:其一,针对7个潜变量各自的观测指标分别实施因子分析。分析结果表明,在统计显著水平(p<0.05)下,相关KMO值均大于0.7,且因子累计贡献率均超过50%,这意味着二级要素之间具备主成分提取的可行性;其二,在总体因子分析中,KMO值大于0.8,累计贡献率同样超过50%。综合上述两维度分析结果可知,潜变量之间的结构效度处于良好水平。

4.3. 模型拟合与验证

在完成数据信效度检验后,将合格数据导入专用的结构方程模型建模软件 IBM SPSS 23 Amos Graphics。随后对模型开展多次修正与拟合迭代,逐步优化模型参数,最终获取标准化估计结果;在此基础上进一步提取模型拟合指数,其具体适配度指标详见表 4。

Table 4. Model fit test results 表 4. 模型适配度检验结果

拟合指标	可接受范围	测量值
CMIN	-	723.479
DF	-	296
CMIN/DF	< 3	2.444
GFI	>0.8 (理想>0.9)	0.854
AGFI	>0.8 (理想>0.9)	0.814

续表		
RMSEA	< 0.08	0.076
IFI	>0.9	0.914
PFI	>0.9	0.913

从模型拟合指数结果来看,卡方自由度比(CMIN/DF)为 2.444,该数值低于 3 的常用判定标准;适合度指数(GFI)为 0.854、调整适合度指数(AGFI)为 0.814,二者均高于 0.8 的可接受阈值;增量拟合指数(IFI)与比较拟合指数(PFI)则全部满足 0.9 以上的优良标准;此外,近似均方根误差(RMSEA)为 0.076,低于 0.08 的推荐标准。综合上述各指数表现,表明模型整体拟合效果良好,经修正拟合后的模型适配度处于可接受范围。

4.4. 模型结果分析

可观测变量与潜变量的对应关联、潜变量间的内在作用机制,具体如图 2 所示。利用路径图对于外源潜变量与内源潜变量的关联路径进行解析,可精准识别一级致因因素对事故影响的重要程度: 其中,作为关键一级致因因素的管理因素、组织因素,与天然气净化系统事故间的路径系数依次为-0.33、-0.20,该结果揭示: 上述两类因素的安全水平越高,天然气净化系统事故的发生概率越低。而工艺因素、作业因素、物质因素、设备因素与场所因素的路径系数依次为 0.24、0.23、0.22、0.17、0.15,由此可见,一级致因因素中管理因素对事故的影响最强,场所因素影响最弱。

进一步分析路径图中外源潜变量的相互关联可知:管理因素与作业因素、设备因素的路径系数达 0.37,同时与其他因素也存在关联。这表明管理因素不仅对天然气净化系统事故具有显著作用,其安全状况更直接关联到系统内物质、工艺、设备、作业及场所等核心要素的安全水平。与此同时,组织因素与管理因素的路径系数超 0.6,表明二者安全状态存在强关联性;且组织因素与其他致因因素呈负相关,可见其安全状态也对其他因素的安全水平具有重要影响。此外,依托路径图对观测变量与潜变量的关联关系展开分析,还可进一步明确二级致因因素对一级致因因素的影响权重。

各一级致因因素与对应核心观测变量的关联强度,可借助路径系数予以进一步量化界定:在物质因素维度,其与天然气净化系统气体浓度的关联程度最高,路径系数达 0.86;设备因素与系统设备运行状态的关联度居于首位,路径系数为 0.73;场所因素的核心关联变量为场所人员密度,路径系数为 0.77,是该因素下影响效应最显著的指标;作业因素中,其与高风险作业类型的相关性表现最为显著,路径系数为 0.74。

与此同时,工艺因素与工艺监测设施完好率的关联强度在所有一级致因因素中尤为突出,路径系数高达 0.90;管理因素与安全标准化等级的相关性最强,路径系数为 0.82,该指标亦是衡量管理安全水平的核心依据;组织因素则与企业安全文化强弱的关联最为紧密,路径系数同样达到 0.86,凸显了安全文化对组织层面安全状态的关键影响。

4.5. 相关研究的共性与差异分析

4.5.1. 与国内相关研究的共性与差异分析

本研究的核心发现与国内过程工业安全领域研究存在多方面共性: 首先管理因素的核心抑制作用具有一致性, 王玉等[3]针对危化品罐车运输事故的研究中, 管理因素(安全监管、制度落实)对事故的负向路径系数为-0.29, 与本研究管理因素路径系数接近, 表明无论在移动危险源(罐车)还是固定设施(净化厂)场景中, 管理漏洞均是事故防控的核心短板; 其次组织 - 管理因素的强关联性具有行业普遍性, 罗聪[9]在

大型氨制冷系统研究中,组织因素(安全文化、责任体系)与管理因素(安全培训、检查)的路径关联系数为 0.58,与本研究(>0.6)差异较小,证实"组织文化引领管理制度落地"的逻辑在制冷、天然气等流程工业中均成立。

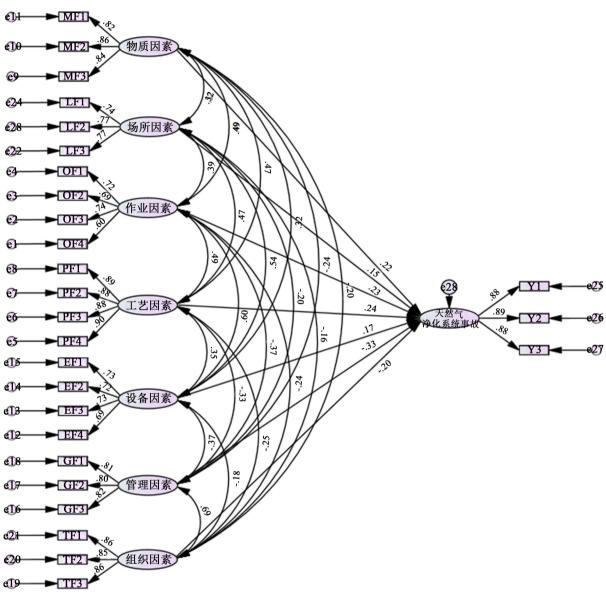


Figure 2. Pathway analysis diagram 图 2. 作用路径分析图

差异则主要体现在设备因素与工艺因素的影响强度排序:罗聪[9]的氨制冷系统研究中,设备因素(设备老化、阀门缺陷)对事故的正向影响系数略高于本研究的 0.17; 而本研究工艺因素影响系数 0.24 高于其研究的工艺因素影响系数。差异原因在于: 氨制冷系统的核心风险点是高压储罐、节流阀等设备的承压失效,设备维护频率直接决定泄漏风险;而天然气净化系统需经历脱硫、脱水(等多工艺单元串联操作,工艺参数(如温度、压力、溶剂浓度)的耦合性强,任一单元参数失控均可能引发泄漏,导致工艺因素权重上升。

4.5.2. 与国外相关研究的共性与差异分析

与国外天然气及石油化工领域研究的共性体现在:本论文模型结果明确:管理因素(路径系数-0.33)、组织因素(路径系数-0.20)是天然气净化系统事故最强的负向抑制因素——即两类因素的安全水平越高(如管理层面的"安全标准化等级"、组织层面的"安全文化强弱"),事故发生概率越低,且二者核心观测变量的关联强度极高(管理与安全标准化等级路径系数 0.82,组织与安全文化路径系数 0.86)。国外相关研究(如基于欧洲 eMARS 数据库的天然气净化事故量化分析、美国 USCSB 对化工泄漏事故的模型复盘)也通过类似路径系数分析证实:管理层面(安全监管、检维修制度落实)与组织层面(安全文化、责任体系)对事故具有显著负向抑制作用,且其核心观测变量(如国外研究中"安全培训覆盖率""企业安全文化评分")的关联强度同样处于高权重区间(路径系数多在 0.7~0.9),二者在"管理 - 组织因素为核心抑制因子"的量化认知上完全一致。

主要差异在于自然因素的影响权重: 国外 eMARS 数据库中欧洲天然气净化厂事故统计显示,自然因素(如北欧低温导致管道冻裂)对事故的正向影响系数为 0.22,高于本研究的 0.15。差异源于地理环境与气候特征: 欧洲部分天然气净化厂位于高纬度地区,低温、暴雪等极端天气频发,且部分厂区临近地震带(如意大利北部),自然灾害诱发事故概率高;而我国天然气净化厂多分布于四川、新疆等地区,虽存在雷雨、地质灾害风险,但企业普遍配套了完善的防雷接地、抗震加固设施,降低了自然因素的实际影响强度。

4.6. 建议

根据结构方程模型的路径系数分析,致因因素与事故风险的量化关系为安全管控提供了精准靶向。 结合各潜变量间的关联性及观测变量的关键影响,提出以下优化建议:

1) 强化管理与组织双核心驱动机制

管理因素(路径系数-0.33)和组织因素(路径系数-0.20)对事故风险具有最强负向抑制作用,且二者路径系数超过 0.6 的强相关性表明需构建"制度-文化"协同体系。

2) 聚焦高影响因素的精准管控

工艺安全强化,构建"智能监测 + 定期校验"双机制;作业风险防控,建立"作业许可-风险告知-全程监护"闭环管理;物质风险管控,制定"源-流-汇"全流程管控方案。

- 3) 优化设备与场所的基础保障
- 设备全生命周期管理,建立预测性维护体系;场所空间优化实施"分区管控+流量限制"策略。
- 4) 建立跨因素联动改进机制

依托管理因素与作业、设备因素 0.37 的路径关联,推行"管理-现场"双检制度,安全管理人员每月联合车间开展交叉检查,重点排查作业规范执行、设备缺陷整改情况;

基于组织因素与其他因素的负相关关系,将各部门安全绩效与组织激励挂钩,形成"文化引领-制度约束-技术保障"的多维改进闭环,持续降低系统事故风险。

5. 结论

- 1) 研究突破传统"人、物、管理"三要素局限,将自然因素(地震、雷雨等)、社会因素(第三方破坏、恐怖袭击等)及组织因素(安全文化、责任体系等)纳入分析,构建含物质、设备、工艺、作业、场所、管理、组织七大维度的致因因素体系,全面覆盖系统显性与隐性风险,反映泄漏事故多源性。
- 2) 经信效度检验与模型拟合验证,各潜变量克隆巴赫系数均超 0.7 (整体 0.844),KMO 值均大于 0.7 (总体 0.837),模型拟合指标(CMIN/DF = 2.444、GFI = 0.854、RMSEA = 0.076 等)均达标,证明致因体系与量化模型科学可靠。

3) 路径分析揭示关键规律:管理因素(路径系数-0.33)与组织因素(-0.20)为事故最强负向抑制因素,其安全标准化等级(0.82)、安全文化强弱(0.86)是核心指标;正向影响因素按强度排序为工艺(0.24)、作业(0.23)、物质(0.22)、设备(0.17),场所因素(0.15)影响最小。且管理与作业、设备因素(0.37)、组织与管理因素(>0.6)关联性显著,凸显协同管控重要性。

基金项目

重庆科技大学研究生创新计划项目"天然气净化系统泄漏事故动态风险评估与风险干预研究" (YKJCX2420718)。

参考文献

- [1] 亓文广. 基于事件树的天然气长输管道风险定量分析[J]. 中国石油和化工标准与质量, 2022, 42(17): 86-88.
- [2] 张若昕, 唐政. 基于轨迹交叉论的危化品企业特殊作业安全事故预防研究[J]. 山东化工, 2021, 50(6): 252-253+256.
- [3] 王玉,王超,庄洁,等. 基于改进 HFACS 的危化品罐车公路运输事故致因分析[J]. 物流技术, 2019, 38(9): 68-73.
- [4] 陈秀珍, 李杰, 曹阳. 基于 HFACS 的塔吊顶升事故人因分析研究[J]. 2024(6): 67-71.
- [5] 张伟, 王丽, 赵亮. 基于 HFACS-ANP 的煤化工火灾爆炸事故致因分析[J]. 中国安全科学学报, 2021, 31(8): 132-138.
- [6] 张佳慧, 边晶梅, 姚爽. 基于 HFACS 改进模型的化工生产事故致因分析[J]. 云南化工, 2025, 52(6): 82-84.
- [7] Qi, H.N., Zhou, Z.P., Irizarry, J., et al. (2024) Modification of HFACS Model for Path Identification of Causal Factors of Collapse Accidents in the Construction Industry. Engineering, Construction and Architectural Management, 32, 4718-4745. https://doi.org/10.1108/ecam-02-2023-0101
- [8] 童雅婷, 袁长峰, 孙兴, 等. 油库区火灾应急过程风险因素-事故情景结构方程模型研究[J]. 河北工业科技, 2023, 40(4): 235-245.
- [9] 罗聪. 大型氨制冷系统实时动态风险评估与智能化管控技术研究[D]: [博士学位论文]. 北京: 中国地质大学, 2023.
- [10] 阳富强, 谢程宇, 林晓航. HFACS 模型在高校实验室安全管理中的应用[J]. 实验技术与管理, 2020, 37(10): 278-283.
- [11] 杨守国, 姚亚金, 庞拾亿, 等. 基于轨迹交叉理论的煤矿事故分析[J]. 煤炭工程, 2019, 51(5): 177-180.