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Abstract

The typical bedding structures and dominant characteristics of mineral composition in shale directly
influence the effectiveness of key engineering processes such as hydraulic fracturing and wellbore
stability. Through a comparative analysis of the differences in mechanical parameters of marine,
continental, and oil shales under varying loads and bedding orientations, three mechanical re-
sponse patterns of shale under loads perpendicular and parallel to the bedding were revealed. The
results indicate that under uniaxial compression, marine shale exhibits the highest strength, ex-
ceeding continental shale by 23~147 MPa, while continental shale surpasses oil shale by 28~49 MPa.
The elastic modulus of marine shale perpendicular to the bedding is lower than that of continental
shale, but its elastic modulus parallel to the bedding is significantly higher. In contrast, the elastic
modulus of continental shale is 10~27 GPa higher than that of oil shale. Under triaxial compression,
both the strength and elastic modulus of marine shale are significantly superior to those of conti-
nental and oil shales with similar mechanical properties, with compressive strength and elastic
modulus exceeding them by 74~111 MPa and 7~39 GPa, respectively. Under Brazilian splitting con-
ditions, marine shale also demonstrates the highest tensile strength, generally exceeding continen-
tal shale by 0~11 MPa, while continental shale surpasses oil shale by 0~5 MPa. These mechanical
differences are primarily governed by the mineral composition and structure of the shales. Specifi-
cally, the abundance of brittle minerals in marine shale forms a high-strength rigid framework,
whereas the high clay mineral content in continental shale and the rich organic matter in oil shale
significantly weaken their mechanical properties. The findings reveal the fundamental differences
in the mechanical behavior of various shale reservoirs, providing a theoretical basis for the differ-
entiated and efficient development and fracturing optimization of marine, continental, and oil shale
reservoirs.
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Table 1. Comparison of mineral composition and microstructure of marine shale, continental shale and oil shale
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Figure 1. Comparison of uniaxial compressive strength between Hetang Group marine shale, Yanchang Group continental

shale, and Nongan oil shale [18]-[22]
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Figure 2. Comparison of elastic modulus between Hetang group marine shale, Yanchang group continental shale, and Nongan
oil shale [18]-[22]
2. EHEEEHETUE . EKAMHETTIE S REHITE R EITEL[18]-[22]

3.2. B4 - BEME - SMTUE M =R E SR TR BIFEHE M R

IS N [24 1% 0 Ty iR I AH DU AT =Rl R 4800, 45 R RW: 7EREEN 10 MPa 244, iR
BLZ NI, WA TUE I =5k R 4R DU 3R N 154.84 MPa, $RPERIE N 22.91 GPa, B EE AT
77 JZH B DIREIR s far 20 7AT )2 BN, VAR DUS 10 = R 48 PR SR N 160.07 MPa, #f & 42.94
GPa, MR T YL BT DR

DOI: 10.12677/me.2026.141010 96 ol TAE


https://doi.org/10.12677/me.2026.141010

L

2R N [25 0 RA IE 7 b it A T AT = R 4R 58, S5 RR . TEEIEN 12 MPa %6 1F T, fi#k
e EZ PN, FEA TS I =R SREE A 77.205 MPa, #PERE N 4.6341 GPa; i 8 PAT ZEINE
i, FEAR TS 0 =PRI N 49.172 MPa, #PERCE A 8.1527 GPa.

SR 26 0 AN [) J2 B THT 1 B S i DUA AR AT = Hl R 45058, 45 R R fERE N 10MPa T, fir#k,
B R F N, A I S S SRS N 80.54 MPa, TRIERE Ry 6.9774 GPa, BMVELI NS
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Figure 3. Comparison of triaxial compressive strength between Longmaxi group marine shale, Songliao basin continental

shale, and Maquan oil shale [24]-[26]
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Figure 4. Comparison of elastic modulus between Longmaxi group marine shale, Songliao basin continental shale, and Ma-

quan oil shale [24]-[26]
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Figure 5. Comparison of tensile strength of three types of shale[19]-[23] [27]-[29]
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