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Abstract

Digital rock core technology, as a product of the deep integration of rock physics and computer sci-
ence, has become an important means to reveal the pore structure and seepage mechanism of res-
ervoirs. Compared with traditional experiments, this technology can achieve nondestructive char-
acterization and numerical simulation of rocks at the micro- to nano-scale. In recent years, multi-
scale digital rock core research has gradually emerged, covering multi-dimensional data integra-
tion from macroscopic CT imaging to nano-scale FIB-SEM/synchrotron radiation imaging, and has
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shown significant advantages in the seepage mechanism, mechanical behavior, and reservoir eval-
uation of porous media. This paper systematically reviews the research methods and development
status of multi-scale digital rock core, focusing on data acquisition, modeling methods, seepage sim-
ulation, and multi-scale coupling strategies, analyzes the applicability and limitations of different
technologies, and looks forward to the application prospects of multi-scale digital rock core in en-
ergy development and engineering geology.
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1. 5|15

TEABREGIE F R AWIG KM 5T, WEAEE I A RIREN - RBG K EE[1]-[3]. A#AERA
SR 22 RBEFLBRRSAE, FLA5 MR 2t B <. K S A R AR ik B S s B R [4]. ARG IIFLBR
SEMRAET B, Wit EHLZHH6(CT) BB 7 B8 (SEM). R IE(MICP) R i 4R (NMR) 25 52 56
FR[5], fE— @R LREE I WLfig ZFLBRARRAE, (H 2T SE98 261 B RE RFR , A A DA SRR A A fL
Bk R4 AEERZIE . AR EIRERK DRI AL 12O o A B EA, (R o BR PR (R A AP 50 2 3K
SR R B E O EOR G [6]-[9], HorzL AR I = 4E s S U, BEs o
A AN B TR, DT RE A8 R SO R T R 2 BRI R SR, 107 R T PR A SL IR AR,
R} E]— 250 AT R . 1 2 REECT O IR BRI S K 2 oK RUBERE 5 6] 3 2 R 0t
BTG PRI LR N SR, R R TR - [ AR BAE RO et |2 a2 6P R S .

ITAER, 2 REHUH OO IR SO E R AR AR A S A2 i L 35 7R 1 B 27 [B)[10]-[12]. FESE
WFBAM, 2 RERERIEC AR EES . B, HekRERE# BT 2B SEM)E RER T IRE
i HL T A (FIB-SEM) A FH T~ 70 M FLIR 4 8 PR S MR AE s 22K RO X ST S LIT 2 4 H(CT)
5B CT Bifg N BEs B R = 4EFLBR I ZR [ 13] [14]. X Ee 75951022 R BEG ST ik 2 FL IR 45 M 1R 4t
T AT R ZI R AT, RAE S B S I AT AR AR ME DS ) A JE [14] 0 R v IR A B S 58247 A R )
WA S A e B BE TR R PR, B fE 3 5 IR FE 5 ) TR D N R 75 D
PRALT AR BUR K SR S A A IR AT R SRRV (MCMC) 7 VA Re 8 5 T TRAE A 1 FL
FREGAFFIEG T 2 B [15] [16]; 150 TR S I 0itl, AT HN 45 (GAN). CycleGAN LUK 73 7%
2 R AE YR B IR 17]-[19], 830 2% 2] i 70 HER R I FLIRARFAE . SERUMR A PR s AR I 4E T A M, M
A R T B —SEI R AR R BRIE[6] [17] [20]-[22]. FIIR[23]5 T ResNet HERME T ZRE. £
Hor s O, JRIE SRR I | AE B R S P G SRR TS TR AT S R A K [24)5 I U-
Net+HHATHF 25 O B EII L, H25 R BIZARAE 2 28500 FL IR 5 R4 U HR 23 RS FE R 90%, 2
FHARTE T B a8 O B 3L R AERE /7; Mingliang Liu [25]58 F AL AT 248 (GAN)SE I 22 R 5076 O )
RIE AR 1 I R FLIR 45 M B R T T BB Ting Zhang [2633E— 57 FH VR 5 5% 2 35 AW 46 (DRDN)
oI FLBR A (B ) A AL R, SEIL T FLBREE M kG FE LA, BRI I TR B S I A O B T VAL
WOR 5 AT 5 TH A % . Honggang Chen [ 18]35 tH 2 T CycleGAN [ E. S5 1 MCT EUE 7 #E2 (SR)
HET, H SRCycleGAN HEAYRENS i SR THEL S B9 A A MCT BRI E, RERE RSG5
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THERIRE, NERE RS RES A ORI DR ERgR. ERRy, 2RESTEOA
SAEALBR G A RAL 5 T BT EEAME, 0 HAEBRALEARA . (% E S5 Bos k)= 0 S0P 47 i
JEBLH T RIS AT 5. B TR RS, 2 REEIE M Hr A0 2 V) B & U R, BT RERS S HE
BTN FLBR S5 A BIE A . MBS AR 2 S B IR T i, ATy AR H R < S 3 R K BHR A =
ROT R ARBEHEIRSFF -

HOvE DHEORLEREBUT K Qb R 5 IR ORI S5 U LA A T B AR S AR A2 REPRIT R T 1 »
BRI R RO TR TR E PG S R AR, IS A E B IF R SR R IR 25 %
L EATTRIN, RN A DARFE . PRIRATII RN, F-A BERTH BBIERACR . fEM B R
PITIH B s O] R K BHE MR A S RGN T S HOR . 2 RER A OHOR A mfs
A . IRBEACHE I REA RN AR FUMERR SO0 3 . BT 5 ARSI TTE AR S BRI
IR A v HAfE DA S 3 B S ASEADL 5 JRy PR A o i O A SR R E 5 I8 FH A% Sl 25 4 v R BT R R,
PR BRI R ORI, FF RS ORI SR AT FR L 1K) A PR R A2

2. ZREBFSLEBFENSZE
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Figure 1. Demonstrating the comparison of the characterization ability of industrial Computed Tomography (CT) technology
for rock pore details under different observation resolutions, as well as the statistical graph of pore scale distribution frequency
of rock samples (self-drawn image)

1. RRTMl CT EARFERRIM 73 5 T3 & A LA T HRIERE WAL AR B A RILBERE 5w iR 5 i+ E
(B4:E)

FEFEMRE By DAL R (CT)FoR O 2 M A O eSS R S =4k F . %
BRI B HAET R PR IR K 2= A POKR RZ AL SRR E R, i B 7 fif )= oKL
BREAS T A B LR R B AELS] [27]0 SEARTIFEIEEIR. SR a3/ LA S = 2T AL
ROR IR, Tl CT CHUNRY A BRER $h A R TUE )2 KR 25 Mt 7 b (1 T HL[28]-[30]. 4R
M7, 26 7 R R AE 100 pm 247, XE DR AT 2R LR S AN IE 45y, DRI AE B0 1 2 RO IROW
ALAL 5 T 747 A2 [ A PR 1o B4, Tlk CT 2 BBy 1 53 52 20875 5 D5 T, AT RERZ M AL I
PERIALIGE R TRAIAE R . ek — IR, H R DRSS B IE SR AL B, LR P 1 [ i R e O B
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O I RBEAEHRFL - 1] 1(a) 7 T B I 23 3 105 v » CT HR BEIS 187 (1 LB AR 5 2 Ha X g
FEF R DR, ABERBFLER RSB, TIAERCK S B RO RE T, SLBRIKE RS Wil
Foy B S NE BT TR AT o 5 BRI, B, AT B (LR AR . B 1 (o) B, A
REFLBRE R 70 Af B SR “AQRE” RFAE: /N RO FLBRE o 4 4 K 22 B (U B 20 HH UAE 10 pm BfT), [RIIE
FEAE D BRAL . XFh “ ZHUNML + DERAL” I ABEUrE 2 ik )2 5 0 b A7 AL

LL73 B3R 08 139 pm 1) CT BEEOAH1, 22 I8 AR BERS A RO BR AR/ T4, PR I BonfLER S
RIS, HESRWE 2 s, JESRLNE, RERBAHEEARE —ERE LRI 7 Tk
CT WA RN, B T REE LI R G ROR AR ALAT 75 45 5 5 i 70 < 0 24 CT B FIB-SEM 48T B¢,
DO SIIEINEES (&= FNIES} A} e

Figure 2. Comparison image between the original image and the filtered image of a rock sample obtained through industrial
CT scanning (with a resolution of 139 pm) (CT scan image)

& 2. Tk CT $34#(139 um ¥R E AHEREREIG SEEAIZEXTELE(CT 31 E)

2.2. PR EE /K - THREK)

BRI CT 53R F R 1 BB (FIB-SEM) 2 H RIBF 705 A1 Hh 7 W2 O FLBR 4544
Ky 2T Be[6] [31]-[34]. Stk CT BEMSAENLMOK 7 HE3 T XA O S AT AR E = 2E iR,
T U MR EL A 2 IO FLBR 2% B o 1207 I RE AT T R AL SLBR TR A RAAE . S IE R LA AL
WP ATTE DL FEZSIA 73 HE AT 5 pm SRIGZEAE T, SRAFIR G CT BG WK 3 s, BERs EDUL A LR
LR U RS 5 2 18 3 AR AL

ARG ] 3(2) s IR FLEREE R, X 5 um SEM BHRHEAT A8 501, RGBS ALIDEIRIK, TR LI
IR 5 0T K B X A T AR X ] (¥ LR BB HEAT 0 R Ge vt s SR G e il FLBR I AR > A3 2R B (1] 4).
LERAEW], e 5 pm ERI R R0 ML S 3T - rPAEFLBURRLIEE A - KL= fEE
P B AL AR R o X 0 A OV T BUE DA AN TUA il 2 2 RS ALBR RO U4 /A0 — 20,
B11% SEM R RENE AT R M ALIR AR G2 B LGS FRFALE , PN JE 80T D RS B AR S i T 52 )
Kl i
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Figure 3. Two-dimensional imaging of pore structure in rock samples using micro-CT scanning (5 pm resolution) (CT scan
image)

3. Bff CT $3H(5 um D PFR)E AiEmFLBREEH Z4Ep IR B (CT 13 E)
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Figure 4. The pore area distribution of the 5 pm SEM image of sandstone (the sample was imaged by SEM; the pores are
segmented through filtering and Otsu binarization; the area is calculated by the number of pixels in the connected domain and
sorted by logarithmic boxes) (self-drawn image)

4. W% 5 pum SEM E&RIFLBEE R S (K SEM fifg; KIS Otsu ZEA S EIFLE; BRUEBEG R
HEHRX K ) (BLE)
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FIB-SEM KB 7B )2 VI H 5 o TR BUG AR 45 & OB, AR RUBE R A IE S i — D) A 18
%, T HE = AEGORSLIR S o 2 BRI ] T8 7R WUA 82 s A WU AR FLRE S B T 2 i 1
WG, FFrERMHT LD LRI R ALBR IS RS A Ah, FIB-SEM fEfis 5
REWE 7 AT (EDS) iZ 5T FL 1 B MBE(TEM) A HORIE A, S M0 o) « FLBR G5 LA HLBT 20 A1 A [ 20 3R AE
S AR CT AR KAEA AR AL I 2 RAL 7 TR AT %5, 10 FIB-SEM {E R &t #y 2l _ERFLR M, (H=
F AL )RR S RO )L, DRI b2 RUBE &6 & OB =4 i i J2 K32 Dot TR 2R R T 1A

2.3. WMRE @KLK

TEWOMRE £, FREERSTAK CT /N T HUR (SANS) LR AR IR 2200/ — S B B S 5645 7 1k
2 T RAEGUR R ALBRGERI[35] 0 X LEHAR BRI A SR TUE BRI E TF IR ILBRURHE, o)kh T 4%
% CT 5 SEM 1E4r HE %I A 2 [36]. Herr, SANS AERSLE 1~100 nm Y6 [ IR BA AR R ME Zi itk
FUBRAE S, & TIPS FLAR 2 A1 A FL B AR R I AR A [37]-[39] TG IR 2200/ — AU B e B S5 U R
PR RILE DAL, JCIHE SR 9K LR S FL B AR BT 5 R LBl [40]. bk, RIS 4EE9K
CT EZ M ¥R LAl ik B+-ak, REWSLBIgKILBR =4 SR B A% [41] [42]. JEH, XL
FERISLER B 5 SEM 8L FIB-SEM BCH, @i MBS Sae B8 (1) BAMR OE,  SEEFLAR 70 A 1) 2 RBEH
G ELEEERE, WM 2082 A O RS AR TR A 58 i 50 2 1R B0 S RF(43]

3. EREHFALEERGZX
3.1. EffmE SEESE

FIMG A SECHE & 7R R UR T AN R UGBS N 73 FE3R (40 u-CT . 25 CT+ SEM. FIB-SEM L) & SANS
ENMRAGAE S ] EX S HAERE S, WA A E . JLAa s SPEE R LB E ST s
C[44]-[47]0 okt B bR iR PR BE OR B 2% ROBE (R B SR GE R RRAIE 035 25 AL TR 2B I 24 LA K Bl 4
K REE (R FLBRAN TS, (7] 3k e R P4 B iy R I NN 2 5 Gt i 22 o e S I b s ROBE f) — UM,
A LRI 71 5 Rl S AR A B 1y ) 15 FE A N EIE . I 9 S B0 B0 E 5 B0 25 SR Lo 345 B fill . 107
L FAAE T RS [R] IR FH R AR (p-CT) 5 15 43 HE 2 (FIB-SEM/SEM)E B, T 2 35 $8 T S 7 2 o fE &5
P PR B BEFIAAUL TR GE 3 7 T IR . Ak, 2 REZRLG 5 AL RERE SCREPS REEHVB IS 15 G AR
L, AR BRI S BN RG22 . [EAERNE, WA 2HESMETEC RS IRILE
ALV R VAN FE AR, W H A5 S (Mutual Information, MI). Dice R %(PA M Hausdorff FF 245, M N4
R E G M S R ER R TR AR

SR, AT VEALE SRR R AT TG 1 2 Bkl B2, AR BB Z IR AELE M) B 22 S (W K FE S 5 e
EZES), BB E SRR T I TEAR, AR RCHE L Al G DUSE A RIEY B B S . IR, St
MR ] Ref Z AR, WREEMH T B AREXE, viEe FECE MRS THREn LR 510
AE@EYE) P IWF o LAk, B TR A B R G 7R AR B 77, AV Re 2 5 NAEELSE I “ X058 40719,
ik Z IO, A SN E AR R RS . BE, 4R PR AR R A AU T A
i PR TR SR, T HLAE S 18 48 5 445 AL IGIE 7 T 0 75 7™ 4 1) o A5 AR

3.2. RV GTER T

BB S Geit BT vE IR A BR A — 4R U0 A B30 & SRS K AL ST R R AL AR 20 A L il S 5L
BREE), AT & BEAR GE TR B = 4R850 6] [48]-[50] HAZ O H AR RAE R FFE MG THRMERTRTH
DL S0 A A 2 AT UH SR R RUBERE R, AT SR b B AR AE 20 F 3 B AN 2 122K I
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FRIAET AR = AR, 7R 25 PRSI A s[RI BE 6 DRk A ji 22 /1 i 45 2R (realizations),
8T I RAH E M W 5 S EUBUBIERT FL . BEAL, EATEE M TXHE B3 CT BT #h 78, fERRFE
MGETE—BUER RIS, 2 — PSR S 1 RILRE T (14 5).

Figure 5. Random four-parameter algorithm for generating digital rock core slices (self-drawn image)

5. BN SR ERERBFE LR (BLE)

BR, XERTEMALE—ERR. BT ARRFLBRE A FFIEZ U, RS EE — S AE L
SEAARIE, FRESUI 5SS IRE  E WT S . S0b AR, BEALE AN B GE AL R AR A,
1 LI A R BRI 2, A 2 SR SRR 2R 3 IR 42K, 2 4t 1H(Multiple-Point Statistics, MPS)
SRS ISP INEE SN R T E @, H A SR TN 2R AR AR M, R ARE AT
WIS UE 7 T AT TH I P K o

33. REFIJEE

TRFE % ) 77 1% B AR i vy 31 o AR B0 SR Sh 2485, 1 3% 2025 A FLBR MR 2 18] 40 A A, AT S
P REEFLIRES M B, oA Z WA LTI o A% O B AR R R AL S Su it I kMO A PR
MEZH R PR, BRI R B8 2% o) Bk HL 2 R )23 (A [24] [26] [51] [52]. fERARRAE L,
W9 3 38 1 B SR B A 2 9 R 1 B4 (40 p-CT SEM B, FIB-SEM), -5t Hth 47 19—k S5 8E 158
ek, HEDUY AR, BEREARRI RIS . BIEE SR, FEERRE M 2 (CNN).
A RPN 45 (GAN) LA S TR G B SRR AT VI SR S HE R, MO AE B 1 £ 8 1 2 RBEFLIRES 1), &
P2 REHE A O [17] [24] [53]. ZAECH ZNH A A S B RENm 7, HRAETEREE
Bz NG EHE SR B 2 FLRSURRAE , 38 S NOARRIEIE BT R IR 22 TEAR e A 2 BT, A 2Rk
I B R PR, SO RE T RN B im0 B FREE, Rets ol i HE g R
PACREGE T AT S AN B VR T o EAh, TR 2E S I o SR G BB T Es A, i — B iR THE
R P YR 1 5 0 P

RO TR 5 ) 5k OO AT D B R RO Rz o0, AR TR RS
SOl B, TN GREE R AR RO R, IR AN R BUEAE R ZE, AR OB TT R AR 4
MR F . R, TREEAE AT R NJERCSE “Z)340 157 (hallucinated details), FCAZER LS AE DLOR
iE, WRESBURSBEBIG R E . IR, ZEIER R EERR, LI R s A R
SRR B Z A X RO R Bea, BBYIIZ ARE VI A Rr iR T, RIS MBS B RS IR A
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AT T B R SR A BIIT RS o S R AR B RS i o IR 7 1 KA o o D e S AR 3t T
AR 1),

BTS2, XETEA N2 R H ORI T2 T R, VRS MUy E DA T B
AVRFIERAL AR O TSN AR R T %

Table 1. Multi-scale digital core construction methods and their advantages and disadvantages

* 1. SREZFEUEERERMRBRS

Fad i e e
R EEGNERERER, AR - R EQ}H/‘]@B‘{&(?I‘QN%XEEX)’ HEER
PG5 - HUTLET PR L 35 T UL ) b s
WHETVE - SCBUMIR EOEE A M. pHE. by | AR AR A&
A B (REE “ e 411)

PRI RS R S A N LI 58 A — 5
* BEAE SR Bt 2 MR iy, M gt AT

R S o M LUV S A0 BT (R R AT B TR
BEMLS S« ARG RELRER . Wamds e SR, FRSREERER)
A SIRIEBAR S < WHEAU R, CHA TR =Y E
« BB ERE, S A ATEME (TS - 0 g TR A 2 A BR R 1R R 2 X))
HSLH)

MR RS RN R E R gy om e, bR REALNA . B
e T UG

PR AT ARITR(CycleGAN), TN

w T JHLIACYeGAN). L regetas, arhes] A S it

Hp CondltlonalQAN\ AR SR R, EA PG R(GPU. 1 17) HL 7 K e 2
A e S5 SEL—SCbe PE—B AR 5 4
* PTG StyleGAN/CycleGAN REVRRLXPHUERIL ity bl e o oo R
WA A A + KRB, A BB

4. BT ZREHFELOYIERINUITE
4.1. ZREWFELEREMNG X

4.1.1. B TFH/REBHEDLBM)

735 /R % 2 J5 7% (Lattice Boltzmann Method, LBM)j& — 283 T /WL B 5 1 2 FE R I B AL 7 2,
REMETE KA BUE LN BB RTIR T, 1 AR 2 AL A RN S RIS SRR E . AR A5 LI I B ik
R B hmia R, FIH “RiE - I (collision-streaming) ™ HLHI SR MFE 2 MiFE 7 5 K J137 0, LBM
TR = AL G BB KRR, BRI vz F T80 O I R e 2 A AR [ 54]-[57] . & 772
& TAREE W EOR AT T AN AT AR an A0, T HERA S K T 22 9K RO AL 1 R 38 sl AT A
AL SR B HLEE[58]. Bk, 722 RS OITH, LBM #1520 V5 R SRR DAt 55 3
YHXFBIE R BT AH B2 AR A TE AL IS5 AL P B AOW R 3 5 K IR i R

LBM L FZARBE LT AN (1) ETEL TGRS, TSR T UMARIE %
RIS Z LI LA, AR RS SR A O = RS MRHIE s (2) REBETEFLME RUE LRAT R shgns, £/
FrR R B E S —8E: Q) BA R B, 5 ZM. SHMEE QRIS EH TR
PEL FETR A1, MSHSE RS ISR, SR, LBM HITHE AR SR OIS, e =
YRR BERCT 5 O 2 A A, AR FE K 58 GPU JFAT &L Wbihk A S Bl 20 KR R 4 HE 2ok A1
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TSGR AN, LBM HOEUE RS FE i FE R ARG a5 20 3, SIZBm Y ol 5 R A% RURT IR AN T fie /N
EEAR, UG UTEBORZE SRR B R MW, AT GREES Rtk 55

4.1.2. FLPEMILEEE(PNM)

FLBR P 28 155 78 (Pore Network Model, PNM)iifi it 6 = 4E 507 O BE T B 2R R U S 4R 400, ¥ 24040
FRZs (A R o “ FLBRY s (pores)” 5 “MxiE (throats)” ZH A FZEE N 4% o 1246 70 DL TR IS (R I 28 TR Ay
il 45-G W (Poiseuille) i3l HE R AR T R K 137 SWRE R, M 2N 2 FLA BB RAT N
[59]-[61]. AHAL T 75 LAE 8 = Yl 317 (] N BRI IS T 3R 24 2 J7(LBM), PNM Kt fA i
By I R B A4 28 WX 2 SE R SR A, REPRAC T UM E A B, R&E SRS, Bk, PNM AT ARE
FER PGSRBS HOT 5, BRRBIER. fLEEBME. WRIE 12010 S AL R Bh 1 5 m 45

SRIM, PNM TR 5 o B AR T FLBR X 28 PR BT B o % T L B R LB . A2 e J LA B
EZ RPELEIIRES, Ui R I FE AT /8 5 B LM AR S B Se g5 M AETE w22, 328 1T B2 I I ) JE 12 (1 v
. PRk, PNM BE&EA H T 20 R BB RAT N AT, T T ROR IR B HLER . SN B 2% LT
B R Eh RS, M4 A LBM 5 EE ik, 152 REHEA DR, & KA —F “LBM-PNM
PR RNG” [62]. ARG AEARVERIR L IT(REV) BSOS S5 14 X I3 A ] LBM 3R K FE o
ZR(NEREIEZR . BE D) IERIE RS, TR A SR 45 2 W R EE ) PNM 2%,
T SO 2 17 22 WS % R FE AR 3 o %5 VR BE R EF 1 2 UL 28, SO T A R B A 3
AR R BERIE, 2 AT 2 B AR N R 2 R A HESE 2 —[63] [64].

42. BANFMRTENELRSZE

4.2.1. ETHRTEFEMNBED S

A B 70 /5 % (Finite Element Method, FEM)JE T 42 it 77 2= B0, 8IS KRR /135 5 48 T8 3% K 2 )
FAEAMINERATAE T IR 7 25 B, BT O 0 SNl B )2 BB T R 2 —[65]-[68]. I %
FO IR AL LS =B D2 R FLBREE R S A3 (Al Ay A5 KB, W] LA B v DR L E 1 = 4R 4EUL ) A
R, B EA SR IARA L. AR E SRR R S S REE SR, T RS A E R EE R 1)
AT RE

X T BB R MR IR 2655 55 DAFE 5 ) 22 SR E A M, R T OB B il St s 5E 1Az
R 10 FSRA BN )i AT, LSRN /) - MR G R IRIUE A I ERE J1FAT N T HUE PGS
(Numerical Homogenization), F]Kf 52 A 45849 55 S0 HAT 3 5 D15 B 20 RE, I8 B vPAl FL IR 45
FIEAS . B2 5y L) 5 73 8] J3 A6 A 201 2 S35 o 1% 07 VE AL RERE 38 7 WOUL 2546 5 75 0 0 21tk
JRZ I NFERR R, IE A R A B AL, RRERSE 1t 7 M B A J2 v U VAN S (RS 4 Ak ) 1k
AR o

4.2.2. BEIT(DEM) SRR GELL

B Ht% (Discrete Element Method, DEM)i& H TR/ B R SR = 2 R B IR AR R, REBH A
PR A ELA2 il ) B O G 2EL R, AT S SR Rz () (e e . IR S5 B IR DL Gk R S
FURIEFE[66] [69] [70]. 1E2 REEXTFH LW, WIHI 9K 20K REE SUR B BT SR U JSE LIRS
U5 AL it DEM AR ES KRR, JymIt 58 2B A 1R 52 0 i B 55 B UR s AL A A mT SE 1R T L ART 25 i o

55 U2 AR S5 0 R B B S E B ) . RIS AR IE SRR A P, DEM AR T4 i
BB BUE TR R A W RS . 1207 1R REMASHDURIURL )35 0] 5 U] [ B fuk g A A2, IR 91 AR
SERCIAEN, DU RIS A =R A8 55 A IR AR R SR A BB Ak, 454G CT 494
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43. ZREHFEVYEENAIRRE SRR

4.3.1. BRERESYIEAEIBE

2 RUEHUT OB R H RN 65 9K FLIR . BORZIUIE DL 22K R R A, 2 i) RUEE 5 ]
BHABEY . AFRFETESAMBENGIFEREER, FBULR P REZRE T TR RS
TEEALIRG 2 2 RV AT o TR AR ALY [ o2 U R 3047 RUBE 3R T (upscaling) i, fi SR IS KT 440
AR BRI S ALBRAS AR e, TSI N RStk iR 2%

DNRERIZ [, 2 BT SO 1] 22 ROBERR & A ESRE (710 — 71, A “ RO - R -
FRPE” R ERER, 855 X ISR R 0 R AR B AR ORURE DX SR A 7 3K 24 2 05 I(LBM) S
B SR g J53 A8 ALl B A 0 I8, T 20 W0 RURE b 388 3o F LR I 2% 520 (PNIMD) B R TT IR (FEM) EAT 55 - S J4k
M S BUROR A A 2 R0 2 W R A XAt i 53— J5iin, 2 RIEA BRITIZ(MSFEM) 5 BLEERL & 5 7%
(direct coupling)it i 78 4H FUEE A% Hh 51N S AL S5 #4 R AL (1 5 bR K, RES 72 AN S 25 9 I ik 55 8 e B2 i
HIB2 T PO B I I FR G AL, s RS R S 3R 48 7 — MR B HE S

43.2. HEHRSHFHFRRT

BT FR SAE TE OB E A SRR R, AR ATE R TB 0. FERLIERE BT RS T 3
IR%E 2 TT5(LBM). B HUTIA(DEM)BUA - [EIRS & 5 2 W BRI BUE N, +H 5 8 i B2 Sk AU SR 1
I, WSO E A SRS SRR BT, A DA R AR R SRR S I R B S bR oK

BExf B TF AR, mtE AR S S SRR AL C SO IR T 2 R EEBI AT IR K OGBS A2
— 7, A E MPL 5 CUDA M4 & RIHTIHHEMER, HitH RSP REEL# CPU 5 GPU 3, W]
EEME LBM. FEM ZEHUE T ERREERE . 51— 071, H&E R 4116 (Adaptive Mesh Refinement,
AMRYHEAR T ZEFLIE 208 Sy K O A7 B0 s, AT .45 M IR 44 6 X S5
IR, INTTAE CRAUERIDURRS B2 A Rl A R BRI S AT S . A, T AL RSB SRR RA ) A AR A5 2%
FLER I £ SR AT DOl T AR 5 /1225, e 7 RS AR & PRI IR A A SR A

WTAESR, N LA REJTVECE B AL UL s 777 1 e 3t S 357 (72 o e I R0 A 22 I 55 2 ) LR &4
FARFIE 53BN 13m0 B2 (8] RIS OC &R, TR Ry AR B A Y (surrogate model), 732 35 PR 115
BRAS B RIS AT DR 0 EE B — S 5 PRI, 2 RUBEB - O PR (i 1 — Mol X B R AT |
SR ERAR[73].

4.33. ZEREMENYE—BERE

Z RIEHTH O EIEE BT X SR ZHE#X-CT). 26 CT. RER FHREAfB T
BB (FIB-SEM) LA K AZ AR (NMR) &5 2 R BRAGEE [ 74] [75]. 28T, AR BSUSHEEASTE S (8] 73 HF . BR
BHLEE e PR PSS T A B 2 5, A EEURAA S R = S E B ZR, 55 5| NG IR
BB, FEREERS I BUESAL R — 2P T8OK, AT SR ASADL S SR ) ] SE 0 5 vl e

BExd R, TR T LA “OpE B O 2SR RS g . — g TH, @i
FINIE TP ERL o () BUG FCAE 5 5m i As, K FLBRIEIE M . FLAR o A J LU SR TH AR S5 B bR #h 5 Se TR A
VERLIR KA, FIESR T UG & 1 R A R R FUSEFLBR GG MR IR . S — 0T, R ST 3RS 18 7
HEZRE R T7VE[17] [18] (W1 CycleGAN)#E FH T~ S HAN[R] 43 1% 28 28 2 18] 1) i85 ROBE LSS, JFIE g FLRRRE . L
RIEFEDVES B E RS RBHTIRIE, RIS 6 KRR NMR 2552565008 1 8 st Ebar#r, M 7E
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Givh R SR X R 5 R BB e O B ) — SO ST SR
5. &5t

2 REERUCT- O BORLE G EAS ARAL S MU 70 R I R IC S o I HOR RENS 5 TR 52
AR R R, SEH LIRS S M R gt 2R 0R&E . A8 H s s Sok §F R
72 REG AR UL R SR ITEFE R Pk, (EREE s rEae . N RS 2 M B E B
RIGFFEERIE, RKZ REZEC A R BO R TR BEIRIT A St R PP I B S TR

FEARFREE L, 2B TBIL AN E T A 02 EROWNE R FWRE L, TS HL
JEFARCTEARBES POk . TEHt IR E A RCKRE ML SRR EE, B RS E KA
10025 ) 43 A1 JHESBARRAE, AR (] 73 e @R 2009 0.1 mm, Xt LARRHT AR G FLBR S ARk, I 5 52
FEOEm. PR L, moPER R CT 5 RER 7ML 7 BB (FIB-SEM) Al ££ IR E 44
KR SEBLARBA N AR 5 =GR T, 73 575 B A AL 0 25 221 8] 5 el 405 A4 01 AR AT 77 T L6 25
o AEPIE T I 73 9 2 5 I R FROASL AT e e OWRUEZ b R AR ST 9K CT /My b7 U (SANS)
DL ARR AR B S T 3t — S AT R ALIR S5, IRAME TR I R AL s AT, IR LT3 B
A LASE B R B o, 38 7 22 BORIBR £ ASRAS B At (1 AL B 45 F 2ol

2 REERCT- 4 DY BRI RIS 14T AW SRR T ORI T iR R o AEIB TR 5 T
1% T PR 22 J7 1 (LBM)5 LR R A5 7R (PNIM) 7 73] A R et R LR AR5 90 AN FRTAL A A P2 A, R AR
RS 5T SR Z (B SEBLE Ab . Horh, LBM RES G402 i 5 = 4EFL RS54 (K FLgk R s 5 2 A1
FrmE AL, T PNM O W26 A0 GR35 PR S R, ST N RUE R B RS U Puk i, —&
S B C o 2 REEB TR R E S EOR AR . B8 A /)BT, A RITiE(FEM) S B0k
(DEM) 73338 H] T3 897 B AT -5 AR SR AR AR R R R 2201, 4B = B0 8 A 0 222 X0 3 2 o 4 42
PLBISR I 7T B REBIR 7 EilthE, £ REH A ORI ImeS RS THERCR K2R
By H— B SEPR, G TR T S B L R B il & S R R — DRI AL
AR S IE A

AEME, 2 RER A OEAREMAE R, TR RIS, SRR LR G HRHIE
5BRALE AL RBR I R EOAR T B BEH 2 RUEHCT A O T AR, JLEARE I U & b
ik RE e TR BT AU SR AT SRR AR, DR VEAN . BTN ST R T AR TR B S R
S REAS

E&WmE

Bepba “ KAl E okl gt &7 W H (S202512715031); BEPE4A B SRR 22 B 58 1 %) 35 B
(2021JLM-48).
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