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Abstract

To investigate the mining pressure distribution law and surface subsidence characteristics induced by
mining activities in the 110203 fully-mechanized mining face of Hou’an Coal Mine, Shuozhou, Shanxi
Province, this study established a 3D geomechanical model using the FLAC3D numerical simulation
software. The model was constructed based on the mechanical parameters of coal and rock masses
obtained from underground sampling and laboratory measurements. Simulations were conducted to
analyze the evolution laws of the stress field, plastic zone, and pressure relief zone in the surrounding
rock ahead of the working face under two typical working conditions: initial roof weighting (with a
weighting interval of 20 m) and periodic roof weighting (with a weighting interval of 30 m). Research
results indicate that (1) a stress-relief zone, a stress concentration zone, and an original rock stress
zone are sequentially formed in front of the coal wall. The widths of the stress-relief zones during the
first weighting and periodic weighting are 14 m and 15 m, respectively; the locations of the stress peaks
are 16 m and 17 m ahead of the coal wall, respectively. The stress concentration coefficient during pe-
riodic weighting is higher, leading to more intense strata behavior. (2) During periodic weighting, the
plastic zone ranges of the roof and coal wall expand significantly, and the main roof participates in the
weighting process, which increases the risk of surrounding rock instability. (3) Sensitivity analysis re-
veals that the cohesion and internal friction angle of coal are the most sensitive parameters affecting
the ranges of the stress-relief zone and plastic zone. The conclusions of this study provide an important
theoretical basis and data support for the optimization of working face support, the determination of
pressure relief gas drainage areas, as well as the scientific demarcation and reclamation of surface sub-
sidence ranges.
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Table 1. Mechanical parameters table of strata in numerical model
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Figure 1. Comparison of vertical stress distribution cloud diagrams in front of the working face coal wall
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Figure 2. Comparison of plastic zone distribution in surrounding rock of working face
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