Analysis Reason of Occurrence of Slip or Suspended Material at Adding Furnace Burden Later and Solve Measures

Chunlei Zhang, Ping Ding, Kai Wang

Production Operations Department, Jiangsu Yonggang Group Co. Ltd., Zhangjiagang Jiangsu Email: zclei427@163.com

Received: Nov. 30th, 2017; accepted: Dec. 16th, 2017; published: Dec. 25th, 2017

Abstract

The paper theoretically analyzes the reason of occurrence of slip or suspended material in Yong Steel's 580 m³ BF. And the problems and solutions to the occurrence of slip or suspended material phenomenon should be discussed.

Keywords

Sealing Furnace, Sealing Furnace Burden, Suspended Material, Slip

高炉加封炉料后期出现崩悬料的原因分析及应 对措施

张春雷,丁 平,王 凯

江苏永钢集团有限公司炼铁事业部, 江苏 张家港 Email: zclei427@163.com

收稿日期: 2017年11月30日; 录用日期: 2017年12月16日; 发布日期: 2017年12月25日

摘 要

本文介绍了永钢580 m³ 高炉封炉料加入后后期出现崩、悬料的现象的原因分析及应对措施,总结了应用

文章引用: 张春雷, 丁平, 王凯. 高炉加封炉料后期出现崩悬料的原因分析及应对措施[J]. 冶金工程, 2017, 4(4): 230-235. DOI: 10.12677/meng.2017.44033

实践中的经验教训,阐述了出现崩悬料中应注意的问题和解决办法。

关键词

封炉, 封炉料, 悬料, 崩料

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

永钢 5#炉建于 2007 年,有效容积 580 m³。2007 年 2 月投产。2016 年 3 月 25 日 5#高炉封炉 10 天,进行中修。虽然 5#高炉成功封炉,但在离休风前一个多小时内连续出现崩悬料现象(所谓高炉崩料,是指炉料难行或短期停滞后又自动突然下降的现象,是高炉内煤气流的上升与料柱的下降运动不相适应的表现[1]),至休风前共出现三次悬料,造成高炉休风时间延长、经济损失严重,此现象确实值得深思,现就五号高炉当时的操作进行分析和探讨。

2. 加封炉料前后高炉炉况变化及操作情况

2.1. 加封炉料之前几天的高炉操作情况(批重变化)

5#炉在休风前几天,负荷正常维持在 4.35~4.4 之间,在 3 月 21 日,将负荷降至 4.0,此负荷一直维持到 3 月 24 日晚 8 时,又将负荷退至 2.65,全焦冶炼。全焦冶炼后,炉况顺行,炉温充沛,硅在 0.5~0.8 之间变动,透指维持在 20~22,风量维持在 1850 m³/min,压差在 90 KPa 左右,风压在 260 KPa 上下,料线正常。批重由 27 t 逐渐变为 25 t, 19 t, 18 t。休风前一个班次的批重为 18 t。

2.2. 加封炉料后炉况趋势

3月25日夜班,计划7点左右休风。经计算后,确定首批封炉料于2点40加入炉内。加封炉料前风量1850 m^3 /min,压力260 KPa,顶温在120℃~180℃范围内波动。在加完几批封炉料后,顶温上升,高达400℃,料线不明,被迫减风至1700 m^3 /min控制料线。封炉料于5点10分左右加完。此时炉况没有大变化。封炉料2点41分为:焦6840 kg×13批,3点31分空焦:(约6840 kg/批+萤石400 kg/批+白云石100 kg/批)×10批。加完后,加正常料。至六点左右,炉况开始出现波动。顶温出现分叉,且偏高,局部气流不稳,压力冒尖、不平稳。出现悬料现象,至休风前共出现三次悬料。

2.3. 封炉前炉内操作变动

3 月 24 日上午 9 点 30 分,此时矿批为 19 t。负荷 2.65,计算碱度 R_2 为 1.08,装制为 $CC\downarrowOO\downarrow C$ 28°26°24°15° 6 3 2 4 O 29°27°25° 4 4 4,至 25 日凌晨零点 30 分,调 a 角为 $CC\downarrowOO\downarrow C31°29°27°15°6 3 3 4$ O30°28°26° 4 4 4。至四点 30 分,缩矿批为 18 t。负荷于夜班接班后降至 2.6,计算碱度 R_2 为 1.01。

3. 崩悬料的原因分析

对 5#高炉休风前出现崩悬料重点从原燃料条件、炉温、封炉料的加入、渣碱度、布料制度五方面入手,分析 5#高炉加封炉料后出现崩悬料原因。

3.1. 原燃料条件

常说高炉"七分原料,三分操作",精料是高炉稳定顺行的基础,2016年1~3月5号高炉人炉焦炭和烧结矿质量总体保持稳定(见表1、表2),虽存在小幅度质量波动现象,但总体而言,入炉原燃料质量较稳定,能够满足高炉稳定运行的要求。

3.2. 炉温波动对后期炉况顺行有着一定的影响

体风前必须保证炉况稳定顺行,并将炉温适当的做高,以保证封炉时有充沛的炉温基础[2],故加休风料前要保证生铁成份[Si]至0.55%~0.65%水平,25日夜班接班时,其上一班中班出铁情况如表1所示。

由表 3 可以看出,其炉温基本上达到预期要求。25 日夜班生铁成分[Si]含量分别为 0.89%、0.92%、1.07%、1.71%,炉温呈上升趋势,而且最后一炉的炉温上升幅度比较快。上升这么快的原因与后期减风赶料线有关,因为风量减幅达 200 m³/min,但是纵观几天的操作变化来看,单纯的炉温上行不单单是造成悬料的主要原因,但肯定对炉况顺行有一定的影响。

3.3. 大批封炉料的加入是导致悬料的诱因

Table 1. Yonggang 5# Blast furnace comparison of coke quality/% 表 1. 永钢 5#高炉焦炭质量对比/%

月份	水分	灰分	挥发分	固定碳	全硫	M40	M10	CRI	CSR
1月	0.6	11.79	1.17	0.62	87.18	90.85	4.99	22.59	70.78
2月	0.6	11.96	1.17	0.63	87.00	91.10	4.92	23.39	70.36
3月	0.61	12.11	1.18	0.64	86.86	90.90	4.91	24.10	70.03

Table 2. Yonggang 5# Blast furnace comparison of sinter quality 表 2. 永钢 5#高炉烧结矿质量对比

月份 —		化学成分/%						平均粒径	转鼓指数
	TFe	FeO	SiO ₂	CaO	MgO	Al ₂ O ₃	R_2	mm	%
1月	57.40	9.28	5.16	10.78	1.59	0.73	2.09	20.41	82.56
2月	57.12	9.11	5.38	10.92	1.64	0.73	2.03	20.48	82.27
3月	57.65	9.23	5.23	10.56	1.64	0.77	2.02	20.54	82.22

Table 3. Blast furnace is out of iron condition 表 3. 高炉休风前出铁情况

出铁时间	铁水温度/℃	出铁量/t	[Si]/%	[S]/%	[Mn]/%
16:30~17:50	1485	151.6	0.48	0.053	0.77
18:55~19:58	1490	120.5	0.52	0.059	0.69
20:39~21:50	1495	93.4	0.59	0.062	0.76
22:25~23:30	1508	87.5	0.62	0.066	0.79

Table 4. Fuel of sealing furnace/kg表 4. 封炉燃料/kg

段	批数	焦炭	萤石	白云石
净焦	13	6840	0	0
空焦	10	6840	400	1000

Table 5. Normal material /kg

表 5. 正常料/kg

种类	烧结矿	球团矿	萤石	白云石	硅石
数量	10200	5800	200	200	500

体风料加顺序为: 净焦 13 批、空焦 10 批、正常料 + 空焦 5 批、正常料 17 批,利用表 4、表 5 数据,封炉料的体积可粗计算为: $(6840\times13+6840\times10)\div0.55\div1000=286~\text{m}^3$ 。熔剂体积大约 = $(0.4\times10+1.0\times10)\div1.1=12.7~\text{m}^3$ 。进入炉内压缩后体积约为: $(286+12.7)\times0.87=259.87~\text{m}^3$,首批料在 2 点 41分下炉,首次悬料约在 5 点 40分左右。从时间上计算,应是封炉料已至炉腹位置,从高炉内型看炉腹位置是倒锥型,而且炉腹位置在炉内属于高温区,因而推断大批焦炭的下达,可能是高炉难行的诱因。

大批封炉料的下达,对气流的影响较大,改变了原先层状分布,二次分布的趋势,使得气流在封炉料较长的料柱内分布改变。封炉料的体积已经计算过,煤气流的改变对炉况产生一定的影响,使得气流通过封炉料后又重新进入正常炉料,必然又寻找新的分布趋势,这种气流的变化可能导致炉况变化。

3.4. 渣碱度的变化

25 日夜班接班后炉温一直上行,最后一炉的生铁成分[Si]达 1.71%。而纵观一天的渣碱度 R_2 变化,也有不合理处,分别为: 1.02、1.18、1.12。一般情况下碱度随炉温的升高而升高,夜班第一炉生铁成分 [Si]为 0.89%,对应的渣碱度 1.02,最后一炉的[Si]为 1.71%,碱度没有更高,反而下降,因此推测碱度的变化是形成炉况难行的诱因。

3.5. 布料制度的变动

25 日夜班接班后,将矿、焦角度同时加大,α角度的加大,相对抑制了边缘,边缘的加重,不利于炉况的平稳过度,因 2.4 谈到封炉料改变了气流重新分布,此时应调整减轻边缘气流的装料制度,保证炉况。

综上所述,第 2.2、2.4 两点影响较大,煤气流改变了,装制应随之调节,但应以减轻边缘为主,此时上部调节对理顺煤气流有着很大作用,可以大幅减轻边缘。

4. 应对措施

4.1. 控制好休风炉温

根据原燃料状况,选择好合理的焦炭负荷,控制好合理的炉温,不至于过高。适当稳定的炉温有利于炉况稳定。2016 年 8 月 18 日 4#高炉封炉一个月,封炉时无崩悬料现象,炉况平稳,安全休风,是个经典案例,结合 5#高炉的原因分析及 4#高炉顺利封炉进行总结有效措施。

首先是控制好炉温[3]。4#高炉在早班时退负荷至 2.4,到中班时,炉温偏高,[Si]高于 1.1%。预计到加休风料时可能要减风,炉温必然上行,因此,根据周期于中班 22 点加负荷至 2.6,估计炉温在夜班 2点左右下达炉缸。夜班第一炉[Si]为 1.60%,第二炉降到 1.08%,时间为 2点 30分,碱度为 1.17。封炉料

于 12 点 40 分开始加入,在下午 2 点多时到达炉身下部,此时炉温下行,有利于降低煤气体积,有利于炉况顺行。这也是没发生悬料的一个重要原因。

4.2. 控制好渣碱度

计算好休风前的理论渣碱度,合理的渣碱度有利于炉况顺行[4]。根据炉温的变化,及时调节碱度。同上例,4#高炉中班时根据夜班的预计炉温[Si]为1.4%,及时调节配料,调节碱度,保证碱度波动平稳,因炉温较高,计算碱度控制在1.0~1.05之间。碱度的平稳,为炉况的稳定打下良好的基础。

4.3. 控制运用好风温

根据实际炉况炉温,依据冶炼周期,适时合理的控制风温,有利于炉温的稳定[5],亦有利于炉况的稳定。同上例,4#高炉预计封炉料到达炉腰时夜班接班后降风温至 1050℃,休风料到达炉腰中部时,进一步降风温至 850℃,并保持到休风。

4.4. 炉外组织好出铁

工长根据炉内状况,合理安排出铁次数,控制好铁口。使得休风料准时到达预定位置。另外,及时出尽渣铁,有利于炉况稳定[6]。判断炉料准确位置很重要,断定休风料所在位置的方法主要是根据入炉料的体积来判断。净焦体积加空焦体积加正常料体积在高炉内的体积位置,高炉体积应从上向下累计,即炉喉加炉身加炉腰。从8月18日4#高炉封炉时出铁来看,休风料到达炉腹的中上部组织出铁最合适,其时铁量很少,出完铁后喷吹铁口半小时,将炉缸杂物喷出,以利于复风后铁口工作,堵口时用有水炮泥。

4.5. 选择合适的鼓风动能

加封炉料后,料线不明,作减风处理。鼓风动能的变化,使得煤气流的分布得到改变[7]。选择合适的鼓风动能对炉况的稳定有很大的影响。根据休风料到达的位置适时减风。4#高炉操作中,休风料到达炉腰时减风 50~100 m³/min,到达炉腹时再进一步减风 50~100 m³/min,主要原则是保持炉况顺行。

4.6. 装制的变动

在上部调节的运用上,还应以发展边缘为主,目的是在休风前保持炉况的稳定和顺行,使得休风料 到达预定位置。4#高炉操作时保持角度不变,直至休风。

5. 结语

休风前炉况稳定对休风料的及时下达有着很大影响,这对复风后的操作也有着较大影响。从上述情况来看,5#高炉封炉前的悬料并不是单一的原因造成的,而是多种因素的综合结果,因此在以后的操作中应运用多种手段调节炉况,使得休风达到预期的效果。以上是对这次封炉产生悬料的原因分析及应对措施的探索,只是笔者的一点看法,望专家指正。

参考文献 (References)

- [1] 孙宝银. 高炉崩料的原囚及预防[J]. 炼铁技术通讯, 2011(3): 33.
- [2] 彭坤, 沙华玮, 宋俊, 等. 南通宝钢 420m³高炉封炉及复风操作实践[J]. 炼铁, 2009(5): 50.
- [3] 熊亚飞,周国钱,张庆喜,等. 武钢 1号高炉封炉开炉生产操作实践[J]. 炼铁,2010(6):30.
- [4] 王继萍. 长钢 8 号高炉封炉与开炉实践[J]. 山西冶金, 2014(3): 3.

- [5] 曹振军, 王宝祥, 赵陆全, 等. 唐山中厚板 1580m3 高炉封炉与开炉操作实践[J]. 炼铁, 2009(6): 12.
- [6] 张均宾. 莱钢股份 3#高炉封炉与开炉操作实践[C]// 2013 年炼铁及原料降本增效实用新技术新设备研讨会论文集, 2013.
- [7] 匡伟, 程贵, 侯志勇, 等. 宣钢 7#高炉封炉操作[J]. 炼铁技术通讯, 2011(3): 15.

知网检索的两种方式:

- 1. 打开知网页面 http://kns.cnki.net/kns/brief/result.aspx?dbPrefix=WWJD 下拉列表框选择: [ISSN],输入期刊 ISSN: 2373-1478,即可查询
- 2. 打开知网首页 http://cnki.net/ 左侧 "国际文献总库"进入,输入文章标题,即可查询

投稿请点击: http://www.hanspub.org/Submission.aspx

期刊邮箱: meng@hanspub.org