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Abstract

With the advancement of MEMS technology towards the nanoscale, microcracks pre-existing or ini-
tiated during service in MEMS devices evolve under complex multiphysics coupled loads. This evo-
lution is one of the primary physical mechanisms leading to irreversible degradation of the mechan-
ical performance of the devices. By integrating phase-field theory with damage mechanics, this
study conducts theoretical modeling and analysis of crack evolution in MEMS thermal conductive
films under thermomechanical coupling environments. The developed phase-field damage model
accurately captures the initiation and propagation of cracks in thermally conductive materials un-
der thermal stress. The model incorporates the influence of initial material defects on fracture be-
havior and introduces multiphysics interaction effects under thermomechanically coupled bound-
ary conditions. Numerical simulations based on the UEL subroutine on the ABAQUS platform sys-
tematically investigate the effects of different thermal boundary conditions and initial damage val-
ues on crack propagation behavior. The established phase-field damage model provides a robust
theoretical framework for understanding the fracture mechanisms of thermal conductive materials
under thermomechanical loads, validated through numerical simulations. This work offers im-
portant theoretical support and guidance for the reliability design and performance evaluation of
future MEMS devices.
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Figure 1. MEMS sensor fabrication process defects and representative volumes

1. MEMS Rz T T Z8a R KR METT

22. FRGEBPSAMHENSRE

“

(6))

HREAE 2D AT R — AN RO S IAMEL Q , ATy 0Q, R E TSR /15247

AR T) - AR R R PGE, & S5IRE MBS A K. Bk, SRR AL I
o, =C:(e-aAT)
q=K-M

(6)

DOI: 10.12677/met.2026.151005 45 PR LR S HEAR


https://doi.org/10.12677/met.2026.151005

2h 5

Hr, CRRNFHENIEEKE, ¢ WNARKE, RorxN o RIPIKAREGRE, M ZEEBERE, 9 0
MRE, K#HFHE,
EAX A BRI & RN

~ Vu+(Vu)T
£=7, )
M=-VT

Horp, VREBREEHE T, wRMBRE, THRRE.
LR PR, 93] 7B T B R AR T R

B C:(g—aAT)
%~ 1=D,)(1-9) ®

2.3. RYHAEMEETR

RBREUN AR ) 1) L2l AR RS B T AR, RSN T — ISR ¢ RIRIGRBIR
SO TRRCR BN A& ¢ AR 58 W R IX AT 1, fESSiF XA T 0, T @ 7E 0 B 1 Z (MmN SEdf
DX A5 1) e 4 i 4 X I ) i 9%

XEF YRR, AR RSO UL R R A

¢(x)=exp[——] ©
Hep, x=0R2HGNHE, o BFnKERSTSH, T WA RS 56 8M k] 2 8] 1 35 7 96 5

EES R E ¢, REFGUNA H W N AR
)=[ da~ j (¢, Vo)dV (10)

Hrb, A FORYHCRGUE R,y (9, V) RECIMIGARR ¢ KILAZERIE VS REL 7T LUE SON:

JQ(¢2 +a2V¢-V¢)
2a

Hrt a R IENAG K EE RS 28, RIS AT AR P R X i
2.4. SHRABE AR ETR
SRR SRR AR RE . VE RE. BTREEAANETIA L, WIS A
S Al 2 2 (12)

Horbvy, NFVENAZRE, w, NAEHRE v WTRAEE, v, NI
SHMRHFRIEN A RE, E HIRE, WIRAE, AN JIThor BT LRIR Y-

¥ :JQ(01(3’M)dV
¥, :Iﬂgoz (E,M)dV

7(4, V)=

(an

_ N |8 (Ve (13)
%—J'chdA~.[QGC;/(¢,V¢)dV—fQG{2a+ : ]dV

Va= .[an, h-udd— J.a(zm Qrd4

DOI: 10.12677/met.2026.151005 46 IR N ST N


https://doi.org/10.12677/met.2026.151005

BH F

Hobt, GONIS AR RO, Sh T RE M5 00, M 00y, L RIS J1 h AR AR T
O F7R. TEMUHHII T, PRI LR R o (2,M ) WA BERLREL g, (2,M ) TTAE S y:

0 (s.00)=3£(9)(c, :2)

; (14)
0. (e.M)=—g(¢)(q-M)
Heft, g(g)=(1-¢)° AR b R AL B BL
F AR N BT RR(13) . A R A i 2 B bR AT AR
gol,z(gaM):(o-n:g) 2( )g(¢) (15)
Heh, P(g)=£(8)- g () TR RATG IO R BRI . RN £ (s), g (s) T LLFE 5
P($)= 1 (9)-8(9) =k +-—2 (16)
Hoeh, k RAERERE R T B B A A e N SR
CAR Ly SN s il NIV GE P
(4 +alve)
.//:— ~(q-E)]dv+{ G, [T dV—J'aQIh~udA+jmmM¢dA a7

W Griffith Wi Z4EiE, SLOFIAY RN, REMM I REATIRAL, T3 RERZ B2
5‘//:J‘59,[p(¢)-0',, -n—h:|.§udA+Imm[p(¢).D.n+M:|5¢dA

+[,G.aV$-n5pdd—| V-p(¢)-o,-oudv (18)
—IQV-p(¢)-D-5TdV—IQ{GcacV%ﬁ—u/s ~Vs —ﬂqﬁ}&ﬁd\’
aC

Hn N AnEmE. w My, iTURRN:

(19)

FAF) Sy = 0 SOZAAE RN ou , OT F 5 #RRAL, PRk w] DAL B B2 1 AR I iy 42 ) 7 R an s
V-0, -p(¢)=0, inQ
V-D-p(¢)=0, inQ

(20
Gsacvzqﬁ—yf_;l';:ﬁ—j—:qﬁ —0, inQ
%, WS NIDF&AE R
p(¢)-0'n ‘n=h, in 0Q,
p(4)-D-n=-0, inoQ, 21

Vé-n=0, inQ

DOI: 10.12677/met.2026.151005 47 IR N ST N


https://doi.org/10.12677/met.2026.151005

2h 5

N T RIS & ¢ AL AR P AT IS, Miehe [2315 NSIAN T — NP1 SRR H (x,t)

H (x,t)=maxy, (x,7) (22)
Rltk, W LAERE BT
1 | H(l—¢) a
G. {Zqﬁ—acv 4 =" (23)

3. YUELE RS
3.1. AEAMAPHRARIAIR R B R IR IE

AR ABAQUS K AF[) UEL FF2 7 X & W s 43 473 (1) 4 s 1 4 Bb b AT ety e i . 18
ABAQUS W% E A S5 A an 14 2 o, 7 T PRI S x y T A ak e, A b &K Au %
N1 x 107 mm. MEIFPERE E =210 GPa, AL v=03, KERESH a.=0.0075 mm, A 6EER
B Ge=2.7N/mo 15 m 1R R 3 s, 5 Miehe [23]F1 Xingxue Lu [24]55 A7E B AL 3R
BHIEE R —3 FREIWIIGTAGRIAFEE, T 54PN 15 Miehe [23]F1 Xingxue Lu [24]%55 A\ fiH 545 1
WiE, XS5 AR R E A G .

o
$AAA44 1444044440 440044

0.5mm
4——>| lIIlIIl
A
0.5mm
y
| \J A
X
[ |
[ >
1mm

Figure 2. Boundary conditions of pure elastic material
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Figure 3. Support reaction-displacement curve of square plate with one-sided notch
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Figure 4. Boundary conditions for a square plate with a single-sided notch (a) Finite element meshing (b)

El 4. BiDEROFRFS FARAIILF FZ () B RITME X 73 (b)

Table 1. Material properties of high thermal conductivity ceramics (AIN)
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JE B
A H(GPa) c11 =333 c12=66.6 c21=66.6
C»n =333 Cs3=133
WIHRIRE(C) 71 =300
FMAE(W/mTC) K =300
KR~ 2 % (mm) ac=0.01
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