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Abstract

Robotic grasping has broad application prospects in warehousing and logistics, industrial sorting,
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and service robotics. Most existing pixel-level grasp detection networks rely on backbones with a
large number of parameters, and thus often suffer from high computational complexity, slow infer-
ence speed, and limited suitability for deployment on real-time platforms. To address these issues,
this paper proposes a lightweight pixel-level grasp detection network, termed the Lightweight
Pixel-level Grasp Network (LPGNet). LPGNet adopts MobileNet as the backbone and introduces a
lightweight multi-scale feature enhancement module (MDM-Lite). With an encoder-decoder archi-
tecture, the network performs pixel-wise joint prediction of grasp regions, grasp angles, and grasp
widths. Extensive experiments on public grasping datasets demonstrate that the proposed method
maintains competitive grasp detection accuracy while achieving better real-time performance and
deployment potential.
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Figure 1. LPGNet network architecture
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Figure 2. Cornell grasping dataset
[&] 2. Cornell FMEXEY HEEE

DOI: 10.12677/met.2026.151008 76 IR N ST N


https://doi.org/10.12677/met.2026.151008

KorE H

TESLEG A, 4% MR R IR U Ry A 7 2, K B G U T o % 46 D9 AT DX s el A7 14 P TR
5 P DA R HICE 58 55 P 5 A SR X % ) A Y o B SR R I R 46 5 AR AR K1 43 77 205 IR A0 AR PR — 2L
DMET 5 IA AT 3 b
4.2. TNiEHR SR E

A TH VTA P 285 PR IR I P B, AR SCR A AR VRN Fa

PRSI 7 1 % (Aceuracy ) AR HE Cornell ZAREEMIFRAETEN V720, ST ITECHE T2 5 B SRR E R A
FHEIoU) K T-1& € BI4E 0.25,

|G, G

10U(G,,G,) = G oG] 0.25
P '

HANEUA FERZE /N T 45 € YE I, A B e 2 -
Angle,, — Angle, > 30

WZRAE PyTorch HESL T 78/, M EMRSE— %y 320 x 320 70 3. W45 TR TN A kAT
igatl, LIPS RL SR BT SR TN ZRAg g o 450 R PR B A I X 4, PICHRC A B2 AT 98 J5E = #8043
RIS AR 22 3 N R B S H B S B 18R S I 7 i R F— B

4.3. &R 94

Q Loss Curve C2 Loss Curve
0.016 0.028 — Train C2
= Val C2
0.014 4 0.026
0.024
0.012
9 g 0.022
S —
S 0.010 ~
© 0.020
0.008 4
0.018
0.006 0.016
0.014
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch
S2 Loss Curve Total Loss Curves
0.014 — Tains2
— vals2
11
0.013
1.0
0.012
« 0011 09
]
S 2
N S
¥ 0.010 08
0.009 07
0.008 0.6
| @estoszn)
0.007 0.5
0 10 20 30 40 50 o 10 20 30 o 50
Epoch Epoch

Figure 3. Loss curves of different tasks
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Figure 4. Grasp detection results
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Table 1. Comparison of different backbone networks
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Table 2. Ablation study of the proposed enhancement module
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Table 3. Performance comparison of grasp detection methods
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