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Abstract

The current oil and gas resource extraction equipment still has shortcomings in system intelligence,
integration, and cost-effectiveness, and cannot meet the modern industry’s requirements for safety,
efficiency, automation, and multifunctionality. Based on actual drilling conditions, this paper inno-
vatively designs an automated control platform for drill string vibration simulation testing, capable
of simulating the operating states of the drill string in different well sections, including horizontal,
inclined, and vertical. The platform’s three-dimensional model was constructed using computer-
aided design software, and the feasibility of the plan was verified. An automated control system for
drill string vibration simulation testing was developed, which relies on the Keil v5 software platform,
uses an STM32 microcontroller as the control core, and controls the power mechanism through com-
munication between the upper computer software and the microcontroller. Data acquisition software
was used to conduct drill string vibration simulation tests, combining different directions and rota-
tion speeds of the drill string to collect experimental vibration data. Experimental results show that
by testing the drill string vibration under different parameter conditions, the rotation speed has little
effect on the fundamental frequency magnitude, but the amplitude of the fundamental frequency
changes with increasing rotation speed and is related to the corresponding interference force and
load conditions. This system has significant implications for reducing costs in oil and gas explora-
tion and development, minimizing equipment damage, and preventing drilling accidents. It can also
provide a foundation for in-depth analysis and intelligent control research of the nonlinear dynam-
ics of drill string systems.
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Figure 1. Simulation system structure composition
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Table 1. Drill string geometric parameters
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Table 2. Sensor technical specifications
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Figure 2. STMF407ZGT6 main control chip
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Figure 3. Filter circuit
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Figure 4. Power supply circuit module
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Figure 5. Data communication module
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Figure 7. DC gear motor and DC electric actuator drive section
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Figure 10. Intelligent control schematic
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Figure 11. Main control flowchart
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Figure 12. Simulation control system

B 12 SR
FAEIR BN BLFIN K B A ) R 40 3 E R SLI W AT AR S RS LU, A WIFIL B H: PC i,
FEFTTFXT RE R 5 sl 5 & M iEs:, FE BV E IR S MER S5, USRI BT 5 SL i
PEE, )5 AR RS R SR A B EAL, 58 IR e b3 .
T B gS e SR ERAE T, AEAMN S, 3TN, eI s R 4 s
Table 4. Experimental test results
Fz 4. SLIMIALER

BEHERES x 7 17 z Jh 5 1)

EH _x75E EH 25
WEMEAT B F WEEL A IE] 51

— bAfE
@® mAfE: (155.0. 1.2100)

RAESFS|

DOI: 10.12677/met.2026.151006 61 Wbk TR S H A


https://doi.org/10.12677/met.2026.151006

gk
FIE X518 FHE_ 27578
WEAE R E] 5 ﬁﬁﬁﬁﬁﬂﬁ-ﬂ
— i 3. -5.5909)
@ KM (28530, =5 5%
FE
6.8
s + ERC I s »° o>
RAEEFS]
IKF_z7518
WEAE A E] 5 51
— &R 420
@ RAME: (1746.0, -5.5420)
5.6
5.8
-6.0
IKF g

o o« o YO s 20 % = o R & as® o B ®

o X
RIEEFS| RAEERS|

B AT, BRSNS 2 AR A SR PR, RO R, RIS 3 1
s TSR TALARACRRURR, i bRl S 2 R TS, R TN RE RS R SRS
WA IEAR SRR AR, HAZR AR T S 8T kA R M. ARG S SRS Gt Ao dr, £4
R HETT A TR SRt B2, FERIEEET 2z M7 MRIRSIE BE bR 28Ul 5
HA BRI W 45 R RO A . 70 Hr H T R R RO YR T AN F 77 17 LA AR S TR & 32
e B BOR B RUE BEA R . DI SRS R SR E R AFRE 4T, FONEESCInse I de & %
AT 7 1] 5 A D 4% IR Bl 9 B (A AT B, T X S0 M U DA P i B A S5 MRS SR M T AR e fE
bRy BRI BR AR AL AR L 1 B 0 24T o B SRR v HIR 35 7 Akt o B

6. &t

B H AT A R TR AT A7 A B DR, ARG BB et 1 B R R S AL B B4k
PRI R GE, 1% ARG R I RO St HE I A P B A 52 2T R 3R R SR AT S Al A B 2 TR P R
IR I SCIR W TS PRIRSD T AR I S AT R, O BRI MO A R PR LB IR . B
FEARB AN G B SIEFIBOR KIS, RS s B R RCR, ORI T2 b, BRARBTA A,
T BHIRAITF R AR

S5 G B IR A A S 30T 6 K SR R G, BB R B SR AR B R 4 A
KPR R IR B S B0 AT Bt R AL B M, S AR SR IRED I 1, 13 BIFEA RIS O T IR Bl s
P B AL B 2oL R ) A7 T R T DA SEBILBOR AE o AR SR FU T RO B REAZ ) SR IR, JF R AR
AR TOUN BRI IRE, T AT sk AT 5E AR e HELICR: % 550 B 1R 5 BRI

SEEk
[1]  ERElE, A mESFH B A VUL R — A 8 B [T, R A v R AR5 5T &, 2025, 45(9): 40-42
[2]1 J¥k, 20k, TAREE, %5 BERETHFFE IR T T R & 7vED]. AR, 2025, 53(6): 38-43.

DOI: 10.12677/met.2026.151006 62 HUBE TRE S HEAR


https://doi.org/10.12677/met.2026.151006

Ry &%

1 KRIE, SR, G R RORTE S /A T[] R TR (H AR, 2025, 1(1): 1-9.
[41 BN AW & S B S5 4647 0 0T[I]. A EA A AR 5 T &, 2025, 45(9): 62-64.
1 BRESES. SE R EORH DL IR RS 3SR 0]. A A AL T AR 5 5 &, 2025, 45(21): 157-159.

1 BR/hoe, xiaifs, £2&. BEEEXUAH R G R G A S SR U], R A% R, 2025, 1(2): 1-9.

[7] Moralles, Y.B.S., Castello, D.A., Bez, L.F. and Ritto, T.G. (2026) Axial-Torsional Dynamic Model of a Drill-String
Considering Thermal-Assisted Drilling. International Journal of Non-Linear Mechanics, 181, Article 105279.
https://doi.org/10.1016/j.ijnonlinmec.2025.105279

(8] GKIE®E, KK, HLLHE, 55 AHESHLILAALHE — Al @ A )], PR & TAE, 2024(S2): 335-337.

[9] BLENE, ik, WM. DREKTIHAFE D) 1225056 & 206 K S [T]. A iREiR, 2024, 52(4): 15-23.

[10] Haghgouei, H., Lavrov, A. and Nermoen, A. (2025) An Elasto-Plastic Damage Model to Investigate the Wellbore Failure
under Cyclic Load of Drill String. Gas Science and Engineering, 138, Article 205607.
https://doi.org/10.1016/j.jgsce.2025.205607

DOI: 10.12677/met.2026.151006 63 IR N ST N


https://doi.org/10.12677/met.2026.151006
https://doi.org/10.1016/j.ijnonlinmec.2025.105279
https://doi.org/10.1016/j.jgsce.2025.205607

	钻柱振动模拟测试自动化控制系统设计与实验研究
	摘  要
	关键词
	Design and Experimental Study of an Automated Control System for Drill String Vibration Simulation Testing
	Abstract
	Keywords
	1. 引言
	2. 模拟测试系统
	2.1. 测试系统主要硬件参数
	2.1.1. 系统钻柱
	2.1.2. 传感器与数据采集
	2.1.3. 动力与执行结构


	3. 控制系统
	4. 控制流程
	5. 实验研究
	6. 结论
	参考文献

