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Abstract

With the widespread adoption oflarge language models (LLMs) in the field of translation, increasing
attention has been drawn to the evaluation paradigms of machine translation (MT) quality. Existing
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MT quality assessment frameworks primarily focus on lexical accuracy and grammatical correct-
ness, while the consistency of sentiment between the source text and its translation is often over-
looked. Deviations in sentiment expression not only compromise the integrity of information trans-
fer but may also lead to misunderstandings in cross-cultural communication. To address this issue,
this study proposes incorporating a dual-path sentiment analysis approach—combining a Long
Short-Term Memory (LSTM) network with a sentiment lexicon—into the post-editing process. This
method introduces a new evaluation dimension for translation quality assessment, thereby enhanc-
ing the emotional fidelity of machine-generated translations. Experimental results demonstrate
that the proposed framework significantly improves the detection of sentiment weakening and po-
larity shifts in translations, overcoming limitations inherent in existing evaluation models.

Keywords

LSTM Model, Sentiment Classification, Translation Quality Assessment, Deep Learning

Copyright © 2026 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0

1. 5|8

A N T8 BE(Generative Artificial Intelligence, GenAlD) H WS IF 7F B 315 S R 45k P ChatGPT.
Gemini. Deepseek 55 9K HI T Z5 AR R AEFS 15 5 81 16 S5 U BT RBLIERERE, B 52T 7RI AR
H5HEIMK. . B RS ESIERESE S S BT, KIE RN ROy EER R R T
SR TR, BT 2R LR 7 R IR RO R, B AR AR i e A A B RIEA
NE RN B X HRIRS) AR b, BRI E AL B 1 J5 9% 48 (Machine Translation
Post-Editing, MTPE)# [a] \ 1.5 §& ¥ J5 4w 45 (Artificial Intelligence Post-Editing, AIPE) [1].

SRT, KB S BAYLLMs) A AL Rt . B %%, LLMs 7EVESCAE ROy TS S A T e it . 15
PHTENE . ANER MRS R ETE SR, ATCVE TS A S BRAT A AN W] R (R SR L[ 2], JR
P & R IR IS RS A S RS, A E R S ORI A DAL R oy, T AR ) B s
FE BB B ) e B S S GBS . L LLMs [ “ BAE 7 FRiE S B A s SCARLEAE AR ] il
ME, ArEFRRETRm . Bk, ABFFUIE T LSTM BAL L XGE S Beia #on L #5 B SOl 7 B — 2
PR, DU T Ak HE 2 22088 175 S W R A

2. xR
2.1. HE8F

LI 1% R R il T TR R 75007, bl v SR A AR R AR, IR SRR
P P SRIURFIE I AT 20 2K T oRBEE TFRNLRA RS, FIRINLES 5 S BEAT I I RIZHT S s 1 2R £
M. ALGERINLAR S ST HIE SRR, FhER DU, DS S5 AT 1 1RO 2K

WL 2 ST VR NI I Rtk T B YL 0 Ar . “IRT, SETHLSRZ MG INER 2 AL
ARk, AEAEBEAR SO MR % TE BN T W ER B AR G807 i AR it /5 ZEN THEATHRIE AR
R AN S RO B . XD AR BN AT KB I (MU g, 10 HL 45 R T REZ B AR 1
SN o AR G TVEIR R JCIEA I B SORHIE UE R, e BB TR FIRHER R [3].
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2.2. REFS

TREE 5 > B R UMK & B0 r 4R O RFE R AT 702K X — T RS R s 75k, a1
VEZ W IE] . PRPE2 I, H B B 4 X 4% (Convolutional Neural Network, CNN) 1§ 3 4 48 [ 2%
(Recurrent Neural Network, RNN)R#E 171 & 73 47

2.2.1. CNN

CNN (Convolutional Neural Network)RIZ5AR#£2 M 4%, & T EBUEBUNMES . CNN BIZ5 4 ik ik
NN Z(Input). HHUZ(CONV, WHEEEHHAE). LZ(POOL). AiEH: 2 (FC) M Z(OUTPUT).
CNN Ah PR o A3V R R X B rh 1 R B i o St J2 00 T A AR A PRI 0 4 B, B SR 1 ik
S SERERE . F LK CNN H7%L4E LetNet5S. VGG16. AlexNet. GoogleNet.

2.2.2. RNN

PG 2 0 25 K SOAR B DU B T SREEAT 3N, 28 rb AR S At 2 DUBE SOE B 138 I3 ph &2
M2 FEATHESI[4]. RNN EEH TEUGAE . SR SCARFRUE TR PLasfiEsE. MR CNN, H
ZER LLEE T B, fKIKN: Inputlayer. Hidden Layer. Outputlayer. ASCHH R LSTM J& T RNN HJ—Ff,

2.2.3. Transformer

AT T T RTPAFREE M, $EH B R JILE (Self-Attention) (b B /751 ¢ &R, it £ SkiF & J1(Multi-
Head Attention)f1{ & 45 (Positional Encoding)SEHI 1 X 5 #1 (1) iRy ROFFAT VH AN 4 R s i 18E . 12 A
& H A ORI R 1A% 0 SRR [ 5]

AR Transformer 2244 K& il F-7E 2 T NLP T4 EUS 1 4o tere, (HHEFEA R “BAH” R
IR TCIEMA A ) 10 . Transformer 84 N 41 2 SiE B N 5 E SN AEL A H, S5
B () P ST A v FE AN B B DA RE (6] HORWE B R AL B 15 IR IE . U R T B Rz DA K
RRE KA, 255 LRSS fe L iR AR .

FHEEZ T, KR HHAAZ M 48 (LSTM) B ARTE HAT THEA 42 Jay d A5 RE /) _EAS & Transformer, {HILAET
SRS B R A RE M . LSTM 25T RNN AL RIBAL, J@ad 51 AT TR (BRI BE
I TRI T 1) FI A PRUIRZS (cell state), REREAA IR HE A BE B AR AOC &, BESubh FEVH 2R M R 7]. LSTM 1£3C
AAE B FAT 55 B % 18 B =y I HER 2

17 1843 HT(Sentiment Analysis), 7R IL1Z3E(Opinion Mining), & HAE 5 AL FE(NLP) A% 0 T4,
Z—, BEEETHE, Ral 1R BT SCAR T B RA I E AR B T ROIRAS . WAL E . &
RIS . 15 HT R LA AR R WS A D ANEENESE.. BEMTEN[8]. 1HEHT
X RE R G E B EEAER, ARMESR B KU MERRE B R B Be R MR AR
HE BT AR 20U 2% BR A AN 0] BN AR BB BE T o R 1B BT A2 S AR BT SRR AN M AL AE B At
Br[9].

3. SCEHEE

AWK ARG D HTHELR, [FET LSTM WIRE % 2 7k 5 1 T 15 Ban gL i) 5 vk, it
KB SR R SRS B — B AT 2 2 PR .
3.1. BIRENE

AHFFAE A TF 8 R 816 5 UL R bk http://www.cs.cornell.edu/people/pabo/movie-review-data/,
FREL WA BB (1) IE THUR A7 T VPN BB 4, 175 RO £ 4 DA SR 0 B VE o i 4 . ANBIE A IE

S|
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X1 ZG

B T iZ 80 45 FR 11 polarity dataset 2.0 1% 3038 4 A 14 1F 1 AN 97 B 5 244 1000 4%
3.2. MATALIE

e G b A O AP MRS, (EIE RO SCARBEAT (—) 2 (B FE R, BIUINRR A 8 SCRIAT 5
Hd); (=) LTI (2) BSORMEF AR R S8, BIgRREE 5 Al R0 B4R -

Horh g ST SOD PREON S % o B MBI BN, AR o TR S ey DU
AR AP IR R R A R AR BRI “ B gt RSO SRl S B i, L RERS AR A
o Ohdt, BT MR (Vocabulary), KBRS B BRI B 0E— R RS, Xl R A
WA vocab SEEL” [10]. # 7 I B AP REIE ) 7018 G A (RIS IR LIRS S i) Sk
USRI 7 B A L 4

i3 Python AbERECHEFE A LA ISR A (96 &, A58 LR eI R O 1)
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Figure 1. Sample length distribution diagram

B 1. BHAKESHE

i AT g, ASHE SR ) 4K 2 BUOC AR K FEIAAE 1000 DL
3.3. EF LSTM R4y

LSTM oot & iciZ4if. AT S IR T], X T 5 B R e I Zid R rh ade e it
TR EFEE . LSTM BALEE — AN a2 A LSTM 2R F A NG . fEM AR, FRATAT UM
—AEEZA LSTM 2, JHEREAINEERR, Dt S & s R AR .

2k LSTM B F LRSS @ S A,  se )5, UK INZREEEEE . JRATT AT DU 22 X
R EX S AL, DISRS RERRERE . FEIZRRL AR, 405Kk bR B (S SR B3 5R) AR AL 23 (21 Adam
5 RMSprop) i K MU ZRiR 72 - M ZR e AL Jm , BATHG ZEAE A Il A0 SR AT VP A, 3 v A 2
KA. HIRIFM F1 2B bR R T BB (P RE

N T PR TR R ERR I, AT ASI A A EOAR, aER 0Ll Xa LSTM 2, EEgE
BAIPLE UL (CNN) LU S R 2 RFHIE . BEAh, SR EE R i 2 ARk, oM Bl 1 s iR, AT Bl
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X R

SRR 2 AL e
34. REERERRE

3.4.1. RESH
update w2v =True # s&f/EYIZRF B8 w2v
vocab_size = 54848 # IJL&, 5 word2id H IR E
n class=2 # 7% 7514 pos Fl neg
embedding_dim =50 # i A FE4E
batch_size = 64 # H{LALFER <)
hidden dim =128 # F&js)Z ¥ %k
n_epoch =35 # YIZREACE Y, Bl P8I ZRAEA I 8
Ir=0.0001 # :3]%; # opt="adadelta', JIANF5E & L 2FE 3K
drop keep prob=0.2 # dropout JZ, S keep [ LA
num_layers=2 #LSTM Z%k
bidirectional = True # & 7§ XA LSTM
list1=[64.789,76.355,79.304,77.545,80.760]#1r=0.0001
1ist2=[70.812,79.179,80.263,81.595,83.123]#1r=0.0002

34.2. IRERIE 2)

100
— acc

60 -
40 A

20 A

0

T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 2. Model accuracy

2. BEGERRR
1% P 5 R AR MR R B ZRES B B T P AR AR Ak, H AR ROR IR0 B, R R HER R .
BT EAERI %N [64.789, 76.355,79.304, 77.545, 80.760]. 2458 % 4 %I ZH)5 , FERUERTR AT H Bk F
3.5. {FRL R AR
RATHVP A RSO I — S, AWF a7 = 2 5 AR AR 2R, G Al s R . ATk
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X1 ZG

AT JRR] S LU B XU S T4 Jam] gt o LAt e 15 S ] i o (R 9 SR 2072 26 T NLTK ) VADER a8, £
B 7500+ R, SCRPSREE g, T SCER b AN I Hownet i) SiUMITE AR 27 b SO BGRB8 3 8000+
TR A o UL YR A LR AN IMDb . G AE1 & IR RS PR (s RIS L RS PP e AL 2R o XL
TER 5517 fR] i Oy N R A S R 0 R, B ORES TR S I O A A HE

SEHON SR AR HTREZR IOFE 22 )5, AU 7 — ok B CIERUER) 56 T b [ 2 i i P Y
WIE, FFAE ChatGPT-5 SRR, [l J5R B S5 1 SO AR BOIFAS H DU 85 R (LK 1)

Table 1. Sentiment consistency analysis

1. BR—HMI R

RS ZEE 18 R — ErE 5 B — B 1 E— R
JFE L IETH 1.457
1 0.076 0.626
BEL 1ETH 0.533

kg RAGH, BARPESCS R SCPRFE T AE B ME B — BN IE ), {H 3 SCAE I R R T
JF 3L
4. BREISH
4.1. BIRREENSEL

RS2 R 1 3 A F R R R M R I MR BB AT R RS, DUIIERFRIE B[ 11]. DUEFEELRI
A B SR 2L R s T e, JUHAE B E PRI AR, R FE R R AR 1 SRR A N 37 R IA B A E T e
JESCRFRIE P IRRE AL, 2 AER “Mm(MAKRsE)” o “AABER” IR SREEERA
T 3 SO0 T3 L B 1) 9] ) 36 B AN DR R E A PR A 20 1 I R B, W “ Bl s (7K -F)” B2A especially
high standards, “4 ABEH” ¥4 remarkable, “JUAGEIR)” #N eye-catching. iXE8ia]1E BAR & H FFE
PRESE 2 7, M LMES 5 JE SO R SR EE . (Rl 8 iUE SCR (shine) with remarkable excellence, stunning,
eye-popping.

4.2. PR AIFEHER

I Z KA, HA)50) 2 (A JC R 8RR BAE M, g SCAE T )R] T A5 M, R RS
KR,

JF ¢ R EE. RS R FIRHEBLS” #41%°4 the creative principle of “strengthening cul-
tural confidence while serving the broader public”, H “while” A&HIEHIAI, (6477 FIFELHRER, 5510
TIRAE SR . Rk, @ UUESCA “Firmly uphold cultural confidence and serve the people.” -

4.3. FFEHESEEF

ANFESCA B MR R, (ERRTT NAA R, o “CNF RS TR, BECRHERER 77 R
79 “Even the best wine fears hidden alleys” o IXF0f T~ SCOC K B R BIRR B 7 SCER, AEARS
NG b 20iE BT, PR CR F R BE 1 B FE IR R YRR 1E “No matter how great it is, it won’t sell

itself if no one knows about it.” -

4.4. FRMMERIE
KiIBSHALE R “HiElE” ¥~ “anew blue ocean” - HEIR “blue ocean” T7EE PR FAE N —NK
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F
b=

Ht

WA Sz A, BB RE RSO B ¢ BAT 7 10 3 I B O “ripe for

growth” .

5. 4518

LSTM AL PRI AR Kb B P 1) et Uy T RO AR 3 e 2 N T b ASCAEVEAR R S R v,

S BE TAC B R SR D RO (R SRS v 4 o B I 0 Blis BR b AT 703 . S S 3A 3t DL L2 s
SUARFEA NZR S P A0, AR AR R LSTM BV ORI o FRTE SR ERE b 51 N JE T4 8] 4 114
5730 M BUE R R AR R SRR, X JEOC S B I — Bkt AT 20 A, B
PPASIGIN TOBTIOYESE, AR SCRESEMER AL I RIS, SRS E S IR R
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