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Abstract

The growing popularity of bullet comments in game live streaming has made sentiment analysis of
massive comment data highly valuable for understanding viewer experience and optimizing con-
tent strategy. This study examines bullet comments from professional matches of the popular MOBA
game Honor of Kings, aiming to accurately identify and analyze audience sentiment tendencies and
discussion foci. To achieve this, 20,704 comment entries were collected from the Bilibili platform.
After preprocessing steps including data cleaning, Chinese word segmentation, and stop-word fil-
tering, Term Frequency-Inverse Document Frequency (TF-IDF) for text feature extraction was em-
ployed. A Support Vector Machine (SVM) classification model was subsequently developed for sen-
timent analysis and compared against a logistic regression baseline. The research systematically
evaluated model performance, analyzed overall sentiment distribution, and explored emotional
motivations behind high-frequency vocabulary. Experimental results showed that the SVM model
achieved an Area Under the Curve (AUC) of 0.8783 and a Kolmogorov-Smirnov (KS) statistic of
0.7016 on the test set, demonstrating good sentiment classification performance. Sentiment analy-
sis revealed that positive comments constituted the largest proportion (64.49%), indicating a gen-
erally favorable audience attitude toward the tournament content. Further analysis of high-fre-
quency words and word clouds identified strong viewer focus on terms like “champion” and “glory”,
reflecting team honor and gaming spirit. This study confirms the effectiveness of natural language
processing techniques in game comment sentiment analysis, providing stakeholders with quantita-
tive tools to understand audience engagement while revealing rich collective emotions and value
identification embedded in data texts. However, future research could incorporate match context
and multimodal data to deepen understanding of dynamic viewer emotions.
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Table 1. Results of the model performance evaluation
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fabr IRk IEE e Eiiip)
AUC 0.9495 0.8797 0.8783 FWE BRI M 4 TR, &> MR MR
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F jieba 731 FERRIIAEE T RT3, FEANGAZH IR TRLAL, ndid FEARERS £ 0.596 #5.

FERAEYN 255 E¥] AUC (Area Under the Curve){E y 0.9495, ElE4E F %) AUC fE K 0.8797, iR
1 AUC 18 0.8783 - AUC fH 2 V-l 0 FEBE AL M BE 1) B8 ZEFR bR, (EERBEIE 1| RARAEAL K 43 S RE 1Bk o
AV 255 SR SR AR B3 RILH T80 1 AUC 18, 38 LR HAG R A X 5 AN [A) 17 2%
FAlaRe
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Table 2. Distribution of sentiment orientation

2. [RREES R

1 1R ) e i H (%)
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DOI: 10.12677/ml.2026.141065 502 HUACIE 2%


https://doi.org/10.12677/ml.2026.141065

ZWAH

M2 AT DR, BRSNS ERE, HHIAR] 64.49%, KWK (EHRE) HIEN
R BEAR R R . SRR B E N 3596 2%, B 17.37%, 1V R I RS ) s s B &N 3756
%, 5 18.14%.
4.3. ERREIESAA XE
T O R R R AR I S A T, HE R T A AR A [ A U A T I X B R ST
AR FER SIS Tr, S5As HEE E, BASE] 7 CU N mia iR (LA 3). 1R IR TR B A
i, it — DI B B st s SR .
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Figure 1. Word cloud of bullet comment
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