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Abstract

In high-temperature chemical reaction processes, precise control of the internal temperature
within the reactor is a critical factor determining product quality and process efficiency. Traditional
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reactor designs suffer from issues such as insufficient uniformity and response lag in multi-zone
temperature control, necessitating optimization through simulation. This paper focuses on a spe-
cific reactor model, conducting steady-state temperature field simulation analysis using the ABAQUS
finite element platform. The study emphasizes investigating its temperature distribution charac-
teristics under multiple operating conditions and the effectiveness of PID control strategies. Simu-
lation results indicate that the modified structure can stably maintain temperatures within the set
range across all working zones. However, thermal coupling between heaters in certain areas leads
to overheating and insufficient temperature issues, necessitating further refinement of both control
strategies and structural design. By simulating this specific reactor model and proposing improve-
ments based on simulation outcomes, this study aims to provide a theoretical basis for thermal de-
sign and control optimization in similar reactors.

Keywords

Temperature Field, Finite Element Simulation, Reaction Furnaces, Temperature Control

Copyright © 2026 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

1. BY

e i T S AR — ot TR M el 2% R REAT MR BN b 2 S R e, AR Z,
el (KPR A = 10 e5E) miRb (H TAoRbgEas . ACEE . B KSR MR S e 5 (T & )8
BRI AR E)E . XERSETZNMHTAEGEE. T R, 338, 87, RMLEREZ ATl
U, LASE IR € P BR AR AL BAL 52 S o

v bSO P SR P 37 (R P4 SO 5 R P BT R R B RCR 7 R X TR e iR
B2, FORFR SRR, A e SRAGA RS . JCHAE 2R KPR R OB, & X 4
FEANTE] 0 H ARG I 2 R B A Z2 BRI AT S P SRS T B s kAR 1] -

Bt DA b RS L 5 RERCESR K AN W Bt v, Xt B NP E I AT R i (1 1 5 AL e A5 T
N, WA RTINS, WTUAE B B AR AN R 0L R AT, vasiete. %
s BEPFIE R S PR LB IR K

FUAT, S0l S B i 05 1 SR A B2 W 7T . 0, V. Bharath Kumar 25 [2]i# id
MATLAB/Simulink #AFIF A 17— Mk TRBIZAR K26 85, REscm B 1RieqT i, BARGFish&tE
RE~ PRI N A (e % ;- Grazia Leonzio <5 [3]JU BT X A% G858 48 3 QI 45 B3 S N 2477 14 il R HR XX
o AR MERBEE, Il 7 DOR PRV KGR SRS IR AR AR, IR MBI, N R .
Gb, RS [A1E X DAV PR S RGP AFE R IE SRR R L, SR T — A M % Sk S 1R 4t
PID #HIMES & 1 A2t PID Ffilds . RT, BUA B AR R E T Z5% TR B kst 5 %
H i o RO 5 i B A AL

ABAQUS &K REDLAT FRICE A, T DO S EAT IR 3% 704, ] DLEAT S5 F M KIARR 5 7
B HEAEK R ARLANE T . AT T RE AL LLSE B RLY BRI M TAE[5] [6].

ASCRAE TNV S it FExt &, il ABAQUS B Hd A BR TR, JTRRESIEA i K,
PG A DN R 542 TOUF RHIRIERCR, IS Sbr TEERMATRIE . AHIIT G L% 145
R L5 P SR SR S s SR ST 1], By —E B TARE N A (E

ik

[

DOI: 10.12677/mo0s.2026.151016 174 e RSE TR


https://doi.org/10.12677/mos.2026.151016
http://creativecommons.org/licenses/by/4.0/

FE %

2. EEIEKL

RNP ARG E IR SMEA AL FURANSIZREE, sl 1 s, N 20T B, i A H
(8], $2 08 S WA TAR R SR B, DLOR B S BRI A0 3R AF D BERAR O S8 PN AT, Fg AN B2 AF 5B
FEE IR TEA R RAR SR ZAE, Ftou ) 1 B iy 5 R . 78 ORR R AP R 21 B2yt — K=/ kI
BeDXIH] T 22 et Ay, SEBUCH IR A o S S0 B AR X DY A X3 A B 1A B LR AR
JAFN, BRALESE T .

AW N =

6
7
8

9

1. Water-cooled flange, 2. Heat pipe, 3. Trap, 4. Sintered ceramic insulation layer, 5. Plug, 6. Re-
action crucible, 7. Support, 8. Lower insulation layer, 9. Water-cooled flange
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Figure 1. Simplified simulation model of the reactor system and its full cross-sectional view
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Figure 2. Meshing results of each part. (a) Upper water-cooled flange, (b) Trap, (c) Lower insulation layer, (d) Support, ()
Lower water-cooled flange, (f) Heat pipe, (g) Crucible, (h) Sintered ceramic insulation layer, (i) Pipe blockage
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Table 1. Simulation material properties
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Figure 3. Heat pipe partition
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Table 2. Contact heat transfer coefficients in simulation
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Figure 4. Schematic diagram of the layout of the reactor heater
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Figure 5. Temperature field simulation results. (a) All heaters are turned off; (b) No. 1 heaters are turned on; (c) No. 1 and No.
2 heaters are turned on; (d) All heaters are turned on; (e) Heating area 1 temperature control; (f) Heating area 1 and 2 temper-

ature control

E 5 BESRMELZER. () MARFEEXRA; ()1 SMAFITH; (©) 1. 2 SMAFITH; (d) WARET; @15
MAXBUREES]; ()1, 2 SXEREIEH

Table 3. Temperature range of each area under different temperature control conditions
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Figure 6. Simulation results under design conditions
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