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Abstract
To achieve high-precision detection and stable tracking of dynamic targets, this paper improves the
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existing LiDAR-Vision ss-modal detection validation method based on morphological and size con-
sistency is proposed, which examines the geometric and scale agreement between LiDAR point
clouds and visual detection results during the data fusion stage, thereby reducing false and missed
detections; second, a motion-direction-based error remediation mechanism is introduced, which
employs dynamic verification to ensure the continuity and directional consistency of obstacle mo-
tion trajectories, mitigating trajectory drift caused by sensor noise, environmental occlusion, or tran-
sient observation deviations, thus enhancing tracking robustness. Experimental results demonstrate
that the proposed approach significantly improves detection accuracy, recall rate, and real-time
processing efficiency. The optimized framework not only strengthens the robustness and stability
of multi-sensor fusion in dynamic scenarios, but also provides a viable technical solution for mobile
robots in detecting and tracking dynamic obstacles.
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Figure 1. LV-DOT trajectory
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Figure 2. LV-DOTG trajectory
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Figure 3. Optimized LV-DOT flowchart
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Figure 4. LV-DOTG algorithm test
4. LV-DOTG B ASLIGHM

FESBURRE

DOI: 10.12677/m0s.2026.151015

169

RS


https://doi.org/10.12677/mos.2026.151015

KR, Wl

4.2. VH&IgHR

FESEIAMLAS N BARKT I 5 BRER TARAE S5, A7 2 R I 5 08 R ARG AE RS P I8 3 e A )
[7]:

1) &ZFEL(loU): A2 FF Lb(1oU) B PR AN AH A HE AR (1 T AR 5 — 4k B s I w5 N R 52 R T HE-& I 4 T
FAZEE, DARPIAS A FETEAE AR FR S =2 B AR I P AN A AS AR & JF AR AR 2 bl o 28 LUK,
RIlE BB 1 [8]

2) & (Precision): i 28 4 TR A F0I A TEAG R B o5 P 0000 A TEA9) PR B (R B A, B FH B R A
AR

TP
TP+FP
3) A% (Recall): 711 % 3R IER TN IEA (0 08 5 BT SRR IE B LG, AL R AR
TP
TP+FN ®)
Horbr TP R4 IEF T N IE GBI EE, FP R4S = TR g IE ] 1) 5B 380, FIN S 4 B e T o B 51 1) 1
R
4)FL 703 FL1 BRI ANE BIR R A8, e — e tahs, HT RN gE—MEAL
CEAMET M “EAA” e, AU ARXER:
Fl—2x Prec.is.ion x Recall
Precision + Recall

SEEG A Dynablox. M-detector 1 LV-DOT it A FuE ik B0 AL AR S a0 I A% 56 B 2
B, MEHLH] 7N 0.1 B 1 VG AN &4 FH L BMEX B RS EE . A RIZA FL 28t 26. Wil 5 s, A
EIH R LA H 2502 5 07715 (LV-DOT G)7E BT 32 7 LU B T 0 R i e FL 2080, 50 TR % &
TNERF A BARZEZ) N 0.1 K. Bulfa AL SR LV-DOT 775 L, W38 7 4 0] 277 TR 3438 21 #)
fm AT K, RS RGN LA HBURR RS L. A, J5 LV-DOT J7iEAs BEEAK, S8
BIRNEAR R B ERRAGYR AN SRS . AT, S S LV-DOTG Fik R ER T T 3ha R

(®)

precision =

Recall =

(10)

TFD R B HER 22
0.8
0.7
0.6
0.51
0.4
0.3
Precision
Dynablox
0.2 M-detector
LV-DOT
0.1 LV-DOTG
0 T
o Ng N2 N N ~

DOI: 10.12677/m0s.2026.151015 170 e RSE TR


https://doi.org/10.12677/mos.2026.151015

BYe, Mol

0.9
0.8
0.8
0.7 4
0.71
0.6
0.6
0.5
0.5
0.4+
0.4
0.34
0.31
Recall F1 Score
Dynablox Dynablox
0.24
021 M-detector M-detector
LV-DOT LV-DOT
0.1 LV-DOTG 0.1 LV-DOTG
0 T T T T T T 0 T T T T T T
O o o Ng NZ . o oF o Ns N N

Figure 5. loU threshold evaluation curve
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Table 1. Algorithm tracking results: Comparisons
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