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Abstract

To address the issues of excessively expanded nodes, long search time, frequent path turns, and
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susceptibility to local optima in traditional A* algorithm-based path planning, this paper proposes
an improved A* path planning algorithm that integrates globally-guided fractional-order artificial
potential field (APF). By introducing fractional calculus to enhance the continuity and memory of
potential field forces, and incorporating global path trend guidance to dynamically constrain the
search neighborhood, the algorithm effectively reduces redundant search directions. Simulation
experiments conducted on the MATLAB platform show that in 30 x 30 and 50 x 50 grid maps, the
improved algorithm reduces search time by 38.67% and 47.31%, decreases the number of ex-
panded nodes by 22.97% and 33.46%, and reduces the number of path turns by 15.38% and 18.
18%, and shortens the path length by 1.94% and 2.95%, respectively, compared to the traditional
A* algorithm. The results verify that the proposed algorithm achieves higher planning efficiency
and path quality in complex environments.
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Figure 2. Schematic diagram of three types of heuristic function calculation methods
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Figure 3. Trapped in local optimum under traditional APF
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Figure 4. Improved APF algorithm avoids local minimum
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Figure 5. Lyapunov function convergence
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Figure 6. Guiding force calculation based on potential field method
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Figure 8. Comparison chart of experimental data
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