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Abstract

To address the issues oflow search efficiency, numerous path inflection points, and poor environmen-
tal adaptability in traditional A* algorithms, this paper proposes a cross-domain planning method
combining an improved A* algorithm with the dung beetle optimization (DBO) algorithm. First, an
intelligent hierarchical cross-domain decision-making method based on environmental obstacle
classification is adopted. Simultaneously, costs such as battery energy consumption and runtime
are introduced into the A* algorithm, dynamically adjusting the heuristic function weights to enhance
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search efficiency. Finally, DBO-based local path optimization is employed to leverage its search ca-
pabilities for path smoothing and refinement. Simulation results demonstrate that this algorithm
exhibits significant advantages in path length, energy consumption, and runtime, providing reliable
technical support for the practical application of ground-aerial amphibious robots.
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Figure 1. Obstacle puffing treatment
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Figure 2. 30 x 30 environmental map
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Figure 3. Schematic diagram of the expanded search neighborhood principle
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Figure 4. Adding mode switching nodes
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Figure 5. DBO algorithm comparison experiment
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Figure 6. Simple environmental simulation experiment
6. BRIMEHELE

5.2. hERERETHEEGASR

TR SN R S R B AT, MRSV BRI . AR I RS KA =) B T4
TESH AV EATE NG, FOAELR S HIERERE . B W R A IR b 5 e R AR (1] 7 A1 8).

a A e
J | WA AN ®
25k GleTatatsreTatatsetatatsatataTaioalal L 1a[3[3[3[a[3[3[al3la[3I31a[3I3la L Talal
1 [cla[ala[alalslalal31a(ala13]aIaIS[B1[ 25 [31a[a13[a1a[3[3(3ala[a18[a13[aa . 1813
I slolslelclalslalelBalolalaIalelo[aIa[a alalalalalalalalalalalalalalalalal: Ial3]
| |
20F t 20 a
! -
- —
151 [ MMM 15 o
922222222 | / 22222222 Bl
1 22222222 | l /1 22222222
B ;222222%% | 222222%%
0F | 33 10F 17 22
(¢ LTI 122 [ [T |22
| 191111111 1111111 |
R
5~’111‘1111|" 9 "H}H}H‘
| I |
| EEEEEEEEEEEE mama| yfb EEEE NN
1 1 L 1 1 1 Ll 1 L 1 1
0 x 5 10 15 20 25 30 0 x 5 0 15 20 25 30
(a) HARMLAIRT b (b) 32 75 bR KA S th 2

Figure 7. Simulation experiments in complex environments
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Figure 9. Simulation experiment in a highly complex environment

E o mEREMEHESRE

DOI: 10.12677/m0s.2026.151006 64 A ()


https://doi.org/10.12677/mos.2026.151006

S8

Figure 10. Three-dimensional path
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