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摘  要 

针对滚动轴承出现多种损伤并存的复合故障时，其故障特征相互耦合，导致单一时域或频域分析方法表

征能力不足的问题，提出了一种基于连续小波变换与改进卷积胶囊网络的复合故障诊断框架(CWT-
ECCN)。该方法首先采用连续小波变换将一维振动信号转换为二维时频图；其次，构建了一个融合轻量

化卷积与双重注意力机制的高效特征提取前端；然后，设计了具备长程依赖建模能力的胶囊结构，并基

于自注意力路由算法计算胶囊层之间的相关度，从而实现故障特征的分类。在HUST与SEU两个公开数据

集上，该方法于噪声干扰与变工况下的平均诊断准确率分别达到98.77%和99.23%。结果表明，该方法

能够有效识别复合故障，并展现出良好的鲁棒性与泛化性。 
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Abstract 
To address the problem that fault features become coupled when rolling bearings suffer from 
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compound faults with multiple coexisting damages, making single time-domain or frequency-do-
main analysis insufficient for effective representation, a compound fault diagnosis framework 
based on Continuous Wavelet Transform and an Enhanced Convolutional Capsule Network (CWT-
ECCN) is proposed. First, the one-dimensional vibration signals are transformed into two-dimen-
sional time–frequency representations using CWT. Then, an efficient feature extraction front-end is 
constructed by integrating lightweight convolutions with dual attention mechanisms. Furthermore, 
a capsule structure capable of modeling long-range dependencies is designed, where the correla-
tions between capsule layers are computed through a self-attention routing algorithm to achieve 
fault feature classification. Experiments on two public datasets, HUST and SEU, show that the pro-
posed method achieves average diagnostic accuracies of 98.77% and 99.23% under noise interfer-
ence and varying working conditions, respectively. The results demonstrate that the method can 
effectively identify compound faults and demonstrate superior robustness and generalization. 
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1. 引言 

滚动轴承是旋转机械的关键基础部件，其运行状态直接影响整机的稳定性与安全性[1]。然而，长期

在复杂载荷、高速运转等恶劣环境下工作，滚动轴承易受到摩擦、冲击和疲劳等多重因素作用而产生故

障，严重时甚至可能导致设备损毁乃至人员伤亡[2]。因此，对其进行及时、可靠的状态监测与故障诊断

具有重要的工程意义。 
近年来，基于深度学习的智能故障诊断方法凭借其强大的自动特征提取能力和端到端学习模式而得

到广泛应用[3]。Xu 等[4]提出改进的多尺度卷积神经网络，有效诊断了复杂和非稳态环境下的轴承故障；

耿志强等[5]提出连续小波卷积神经网络，用小波卷积层替代常规卷积以提升对关键信号的敏感性和诊断

精度；Wang 等[6]提出轻量级 C-ECAFormer 显著提升了小样本与强噪声下的故障诊断性能。然而，上述

研究大多聚焦于单一故障模式的识别，实际工业场景中，轴承故障往往以多种损伤并存的复合形式存在，

形成复合故障。在复合故障中，不同类型的故障特征相互耦合、相互影响，机理复杂且难以解析，导致

诊断难度更大，危害性也更高[7]。 
针对这一问题，研究者们开始探索基于深度学习的复合故障诊断方法，旨在将复合故障智能解耦为

其组成的单一故障单元。Huang 等人[8]提出了基于多标签学习的一维深度卷积神经网络，该方法可以输

出单个或多个标签用于识别和解耦复合故障；Cui 等[9]结合生成对抗网络和迁移学习，有效解决了少样

本条件下复合故障诊断难题；Liang 等[10]利用小波变换获取二维时频特征，并将其输入卷积神经网络，

实现齿轮箱复合故障诊断。值得注意的是，以上方法基于卷积神经网络，其在池化操作逐层抽象特征时，

易丢失特征间的空间层次关系，并且在变工况等复杂场景下的适应性与鲁棒性仍有待提升[11]。 
在上述背景下，胶囊网络被引入故障诊断领域。该网络采用向量神经元(胶囊)和动态路由算法，能有

效保留特征的位置、姿态等空间信息，更适用于处理复杂的特征关系。Huang 等[12]提出了深度解耦卷积

神经网络，该方法使用多个胶囊层来构建解耦分类器，首次成功地将复合故障与单故障数据解耦；Li 等
人[13]提出一种 WavCapsNet 的复合故障诊断方法，提高了故障诊断模型在决策过程中的透明度和可解释

性。尽管如此，现有研究仍存在一定的局限：其一，此类研究多停留于单一时域分析，难以保留完整的
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时频信息，进而制约模型的识别能力与鲁棒性；其二，前端常规卷积计算开销较高、特征聚焦有限，限

制计算与推理效率；其三，后端经典胶囊网络侧重局部“部分–整体”关系，对同层胶囊的横向依赖建

模不足。 
为解决上述问题，本文提出了一种高效的基于连续小波变换和改进卷积胶囊网络的复合故障诊断框

架(CWT-ECCN)，保留了完整时频信息，提高了胶囊网络对复合故障的精准识别能力。 

2. 基本原理 

2.1. 连续小波变换 

连续小波变换(Continuous Wavelet Transform, CWT)以一个可平移、可伸缩的母小波为核，对一维振

动信号进行无下采样的连续卷积，得到二维彩色时频图[14]，既可全面反映信号的时间–频率联合分布，

又能够高精度定位局部瞬态冲击等微弱故障特征。由于不丢失任何采样信息，它在强噪声和复杂谐波背

景下依然能有效检测轴承早期微小损伤，具备极高的诊断灵敏度与分辨率。公式如下： 

 ( ) ( ) ( ) ( )* *
,

1, d df a b
t bW a b f t t t f t t

aa
ψ ψ

+∞ +∞

−∞ −∞

− = =  
 ∫ ∫  (1) 

其中， ,a b 分别为尺度参数与平移参数； ( )f t 表示原始时域信号； ( )tψ 为母小波函数； ( )* tψ 是其共轭复

数； ( ),fW a b 则为信号在特定尺度与平移下的变换系数。 

2.2. 卷积注意力层 

本文提出了一种轻量化的卷积注意力层用于关键特征提取，其结构如图 1 所示。首层通过标准卷积

提取初始特征。接着，采用深度可分离卷积[15]与深度卷积交替使用构建轻量化主干，大幅减少参数量的

同时兼顾通道间信息融合与通道内细粒度特征提取，在保证精度的前提下压缩了模型规模和推理成本。

其次，在关键层使用不同扩张率的膨胀卷积[16]，以零参数开销扩大感受野，捕获复合故障的多尺度信息，

并增强对跨区域耦合特征的感知能力。此外，在不同深度策略性地嵌入了双重注意力机制：在浅层刚从

时频域映射学习到基本模式时引入时频注意力[17]，可迅速识别并强化关键时段与频段，抑制初始噪声；

在深层则利用归一化通道注意力[18]重标定特征通道，凸显最具判别力的高阶信息。并且结构通道数从 32
到 256 按倍数依次增长，确保模型容量随着网络深度稳步提升。 
 

 
Figure 1. Structure of the convolutional attention layer 
图 1. 卷积注意力层结构图 
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卷积注意力层将多种卷积与注意力机制协同优化，最终形成一个计算高效、感知全面的特征提取体

系，能够精准解码隐藏于时频图中的多层次、多尺度故障信息。 

2.3. 胶囊网络 

2.3.1. 基于注意力路由的胶囊网络 
在完成前端特征提取后，进一步设计胶囊网络结构以实现特征关系建模与分类。 
胶囊网络以向量形式的“胶囊”单元替代传统神经网络中的标量神经元，这种设计能够同时编码特

征的存在概率和实例化参数(如位置、方向、尺度等)，保存了更丰富的信息。胶囊向量的模长表示实体存

在的概率，方向则编码实例化参数。网络结构包含卷积层、初级胶囊层和高级胶囊层。 
在初级胶囊层中，先执行卷积操作，再将得到的神经元聚合成向量，并通过 squash 函数对向量进行

激活。设 l
ns 为第 l 层的第 n 个胶囊向量，公式为： 

 ( ) ( )
1squash 1

exp

l
l n
n ll

nn

 
 = − ⋅
 
 

ss
ss

 (2) 

路由算法利用胶囊之间的相似性来计算耦合系数，本文采用相比传统动态路由算法更高效的自注意

力路由算法[19]，如图 2 所示， ,l ln du 表示初级胶囊层有 ln 个胶囊，每个胶囊维度为 ld ；
1 1,l ln d+ +

U 表示高级

胶囊层有 1ln + 个胶囊，每个胶囊维度为 1ld + ；
1,l ln n +

B 为先验矩阵，包含所有权重的判别信息；
1 1, , ,l l l ln n d d+ +

W
为权重矩阵；

1,l ln n +
C 为耦合系数矩阵。 

 

 
Figure 2. Structure of the self-attention routing mechanism 
图 2. 自注意路由结构图 

 
在初级胶囊层中，对于激活后的第 n 个胶囊 nu ， ( )1, ,:l ln n +

U 包含了这个胶囊对高级胶囊层所有胶囊的预

测，公式如下： 

 ( ) ( )1 1

T
, ,: , ,:,:l l l lnn n n n+ +

= ×U u W  (3) 

接着计算自注意张量 ( )1:,:, ln +
A 来衡量胶囊间的相关性： 
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 ( )
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T
:, ,: :, ,:

:,:,
l l

l

n n
n

ld
+ +

+
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U U
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其中， ld 用于提升训练稳定性，同时实现耦合系数与先验矩阵之间的平衡调节。 
然后，通过自注意张量计算初级胶囊与高级胶囊层之间的耦合系数矩阵： 

 
( )( )

( )( )
, 1

1

1 , 1

:,
(:, )

:,

exp

exp

l l l

l

l l l l

n n n
n

n n n n

+

+

+ +

=
∑

∑ ∑

A
C

A
 (5) 

最终，高级胶囊通过以下公式计算： 

 ( ) ( ) ( )( )1 1 1

1 T
:, ,: :, :,l l l

l l l l
n n n n+ + +

+ = × +s U C B  (6) 

2.3.2. 全局上下文增强模块 
本文提出了一种全局上下文增强模块(Global Context Module, GCM)，首次加入胶囊网络中，该结构

可以自适应地增强信息丰富的胶囊特征，同时抑制冗余或噪声胶囊，其结构如图 3 所示。 
 

 
Figure 3. Structure of the Global Context Module (GCM) 
图 3. 全局上下文增强模块(GCM)结构图 

 
首先，设输入胶囊集 B N D× ×∈s   (其中 B 为批次大小； N 为胶囊数； D 为胶囊维度)。通过对初级胶

囊层每个胶囊的特征维度进行平均池化，生成一个全局上下文描述子 B N×∈z  ，编码各胶囊的整体激活

强度： 

 ( ):,:,
1

1 D

d
dD =

= ∑z s  (7) 

随后，利用一个包含降维与升维的瓶颈结构来学习胶囊间的非线性相关性，并生成归一化的注意力

权重向量 ( )0,1 B N×∈a ： 

 ( )( )1 2ReLUσ=a W z W  (8) 
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其中， 1
N M×∈W  和 2

N M×∈W  分别为降维和升维变换的权重矩阵； max 1, NM
r

 =  
 

是瓶颈层的维度； r

为降维比率；σ 代表 Sigmoid 函数。 
最后，将生成的注意力权重 a 逐元素乘以原始胶囊集，得到增强后的输出 ′s ： 

 ′ =s s a  (9) 

全局上下文增强模块与自注意力路由机制形成了功能互补的协同效应。全局上下文增强模块负责横

向的、层内的全局信息整合；自注意力路由则处理纵向的、层间的信息传递。这种正交结构的信息流设

计构建了一个更全面的特征整合网络。 

3. 基于 CWT-ECCN 的滚动轴承复合故障诊断框架 

本文提出的基于连续小波变换与改进卷积胶囊网络的复合故障诊断框架，命名为 CWT-ECCN (Con-
tinuous Wavelet Transform–Enhanced Convolutional Capsule Network)，整体结构如图 4 所示。该框架包含

两个串子块：第一个串子块利用连续小波变换(CWT)对滑动切割后的滚动轴承振动信号进行时频变换，

生成二维时频图，保留信号完整时频特征，提升模型对瞬时故障的敏感性；随后，将时频图输入第二个串

子块改进卷积胶囊网络(ECCN)：首先，通过卷积注意力层提取关键特征并输入初级胶囊层，再经过 GCM
重标定胶囊特征权重，增强胶囊间的关联建模能力，然后通过自注意路由将信息传递至高级胶囊层，最

终通过 L2 范数计算输出胶囊的模长即各单一故障的预测概率。将各单一故障预测概率的均值作为识别

阈值，对所有超过阈值的类别予以输出；当内圈与外圈两类同时被选出时，则视为对应的复合故障类别。 
 

 
Figure 4. CWT-ECCN-based framework for compound fault diagnosis of rolling bearings 
图 4. 基于 CWT-ECCN 的滚动轴承复合故障诊断框架 
 

另外，模型训练采用边界损失函数(Margin Loss Function)，公式为： 

 ( ) ( ) ( )2 2
max 0, 1 max 0,K K k K kL T m v T v mλ+ −= − + − −  (10) 

其中，k 为故障类别； KL 为类别 k 的间隔损失； KT 为分类指示函数(分类正确取 1，错误取 0)； kv 为识

别类别的概率； m+ 为上界，取 0.9； m− 为下界，取 0.1； λ 为比例系数，取 0.5。 
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4. 实验验证及结果分析 

为验证 CWT-ECCN 在滚动轴承复合故障诊断中的有效性与鲁棒性，分别在华中科技大学轴承数据

集(HUST)和东南大学变速箱数据集(SEU)进行了消融分析和对比试验。所有实验均在 Windows 10 系统环

境下进行，编程语言为 Python，深度学习框架为 TensorFlow，硬件配置为 Intel Core i5-9300H 处理器和

NVIDIA GeForce GTX 1660 Ti GPU。 

4.1. 数据集介绍与处理 

华中科技大学(HUST)公共轴承数据集由 Spectra-Quest 机械故障实验台采集，实验装置如图 5 所示。

所测轴承型号为 ER-16，采样频率为 2560 Hz。实验选取了该数据集在 65 Hz (3900 rpm)工况下四种典型

的健康状态：健康、内圈中度故障、外圈中度故障和内外圈中度复合故障。 
 

 
① 速度控制器；② 电机；③ 轴；④ 加速度传感器；⑤ 轴承；⑥ 数据采集卡 

Figure 5. Experimental test rig of the HUST bearing dataset 
图 5. HUST 轴承数据集试验台 

 
将采集到的轴承振动信号按 1024 点为一窗口切分样本，滑动窗口步长为 500 点；经 CWT 转换为 128 

× 128 尺寸的 RGB 时频图。各故障类型均采集 500 个样本，随后按照 8:2 比例完成训练与测试集划分，

相应的标签设置和样本分布如表 1 所示。为降低随机性影响，所有实验均重复 10 次并取平均值。 
 
Table 1. Data labels and distribution 
表 1. 数据标签及分布 

故障类型 标签 
样本数/个 

训练集 测试集 

健康 100 400 100 

内圈故障 010 400 100 

外圈故障 001 400 100 

复合故障 011 400 100 

4.2. 模型参数设置 

将时频图作为 ECCN 深度学习模型输入，具体参数设置如表 2 所示。每层卷积后使用了批归一化加
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快收敛并稳定训练。模型训练过程采用Adam优化器，学习率采用指数衰减的方式，初始学习率为 0.0002，
衰减率为 0.97，Batchsize 为 20。 
 
Table 2. Structural parameter design of ECCN 
表 2. ECCN 结构参数设计 

层数 结构名称 卷积核大小/步长 输出 

0 输入 - (128, 128, 3) 

1 标准卷积 3/2 (64, 64, 32) 

2 深度可分离卷积+膨胀卷积(扩张率 = 2) 3/1 (64, 64, 64) 

3 深度卷积 3/2 (32, 32, 64) 

4 时频注意力 7/1 (32, 32, 64) 

5 深度可分离卷积 3/1 (32, 32, 128) 

6 深度卷积+膨胀卷积(扩张率 = 4) 3/2 (16, 16, 128) 

7 归一化通道注意力 - (16, 16, 128) 

8 深度可分离卷积 5/2 (6, 6, 256) 

9 初级胶囊层 - (32, 8) 

10 全局上下文增强模块 - (32, 8) 

11 高级胶囊层 - (3, 16) 

12 输出层 - (3) 

 
关键超参数的确定基于实验寻优与理论分析的综合考量，旨在实现诊断精度、训练稳定性与计算效

率的最佳平衡。首先，将 CWT 变换后的时频图尺寸设定为 128 × 128，不同尺寸对比实验由表 3 所示。

相比之下，64 × 64 尺寸因分辨率不足导致微弱故障特征丢失，致使准确率下降；而 256 × 256 尺寸虽能

维持高精度，却带来了显著的参数冗余与计算开销；而 128 × 128 的尺寸在保留关键时频细节与控制计算

成本之间取得了平衡。其次，在胶囊网络的架构配置上，选定 32 × 8 × 16 (初级胶囊层数量 N × 初级胶

囊层维度 D1 × 高级胶囊层维度 D2)为最佳组合，对比实验如表 4 所示。在所有实现 100%准确率的配置

中，该组合的训练耗时最短，优于其他组合，表明其在保证特征表达的同时最小化了路由计算负担。同

时，实验发现高级胶囊维度过低(8 维)，特征表达受限导致准确率有所下降；而过高(24 维)则引发参数冗

余和训练波动。最终，32 × 8 × 16 配置成功平衡了特征表达与计算资源，被确定为模型的最优解。 
 
Table 3. CWT time-frequency map size experimental results 
表 3. CWT 时频图尺寸选择实验结果 

CWT 时频图尺寸 时间/s 准确率/% 参数/个 

64 × 64 164 99.78 490,399 

128 × 128 195 100.00 657,311 

256 × 256 278 100.00 1,059,323 
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Table 4. Capsule network hyperparameter selection experimental results 
表 4. 胶囊网络参数选择实验结果 

N × D1 × D2 时间/s 准确率/% 参数/个 

64 × 4 × 16 278 100.00 65,8211 

32 × 8 × 16 195 100.00 65,7311 

16 × 16 × 16 221 100.00 65,7053 

32 × 8 × 8 243 99.87 45,4559 

32 × 8 × 24 213 99.28 56,0063 

4.3. 消融实验 

为进一步阐明各关键组成部分的性能贡献，本研究以全结构 CWT-ECCN 为基线模型，针对模块去除

情形设置了消融实验。模型一中特征提取模块全部采用标准卷积且移除了双注意力机制，用以对比特征

提取模块的效果；模型二将自注意路由替换为动态路由算法(迭代 3 次)，旨在验证新路由机制的优势；模

型三在完整模型的基础上移除了全局上下文增强模块，以量化其贡献。为增强模型鲁棒性和结果可区分

性，实验在振动信号中叠加了−2 dB 信噪比的高斯白噪声，实验结果如表 5 所示。 
 
Table 5. Results of ablation experiments 
表 5. 消融实验结果 

模型名称 时间/s 准确率/% 参数/个 

模型一 204 98.68 1,577,911 

模型二 257 97.78 51,014,188 

模型三 205 98.25 657,019 

CWT-ECCN 195 99.25 657,311 

 
由表 5 可知，模型一完全采用标准卷积结构，参数量达到 CWT-ECCN 的 2.4 倍，准确率却没有提高，

说明本文提出的卷积注意力层在保障特征提取能力的前提下能够显著降低模型的复杂度和计算开销。模

型二中，自注意路由相较于动态路由算法，将训练时间缩短了 27%，参数量大幅降低，且准确率提升了

1.47%，表明自注意力路由在准确性、效率和计算成本方面均优于传统算法。模型三中，GCM 作为轻量

结构，仅增加 292 个参数，却将准确率提升了 1.0%，且运行时间最短，验证了其在捕获胶囊间全局关联

信息方面的重要作用，同时该模块与自注意路由在横向整合与纵向传递上形成协同互补，进一步提升了

模型的整体诊断能力。 

4.4. 对比实验 

为验证 CWT-ECCN 分别在噪声与变工况下的故障诊断准确率和泛化能力，本文与常见的深度学习

方法(WT-MLCNN、MSCNN-CapsNet、ICN、和 ResNet-18)进行了对比实验。为了匹配分类任务，对网络

的参数进行了微调，网络结构介绍如下： 
1) WT-MLCNN：Liang 等人提出的多标签复合故障诊断框架，该方法将小波变换生成的时频图输入

至多标签卷积神经网络(含 6 个卷积层、4 个池化层)，采用 Sigmoid 输出和二元交叉熵损失进行训练； 
2) MSCNN-CapsNet：Li 等人提出，其方法将短时傅里叶变换生成的时频图输入至一个三通道多尺度
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卷积网络以提取并融合特征，随后由一个采用动态路由的胶囊网络完成故障诊断； 
3) ICN：袁洪芳等人提出，其结构集成了卷积层、池化层、SE 模块与采用自注意路由的胶囊层。原

模型直接输入一维信号，在本研究中，为公平比较，将其输入调整为二维时频图； 
4) ResNet-18：He 等人提出的经典深层残差网络，由 1 个初始卷积层和 8 个残差模块组成。为适应

多标签任务，其输出层修改为 Sigmoid 函数，并采用二元交叉熵损失进行优化。 

4.4.1. 噪声环境下的性能分析 
由于实际采集的振动信号不可避免地掺杂各种噪声，为检验 CWT-ECCN 在噪声背景下的鲁棒表现，

本研究向原始数据加入了具有不同信噪比(SNR)的高斯白噪声，并对五种方法的抗噪性能进行实验评估，

结果如表 6 和图 6 所示。为便于直观对比，图 7 和图 8 分别展示了−2 dB 信噪比下，五种方法的诊断混淆

矩阵以及通过 t-SNE 降维后的特征分布情况。 
 

 
Figure 6. Comparison of accuracy of different SNRs on the HUST dataset 
图 6. HUST 数据集不同信噪比下的准确率对比 

 
Table 6. Accuracy of different signal-to-noise ratios (SNRs) 
表 6. 不同信噪比下的准确率 

模型 
噪声/dB 

−5 −2 0 5 10 平均值 

WT-MLCNN 91.20% 96.20% 96.38% 98.38% 99.03% 96.24% 

MSCNN-CapsNet 63.40% 81.70% 87.70% 92.28% 96.85% 84.39% 

ICN 93.25% 97.04% 97.73% 97.88% 98.19% 96.82% 

ResNet-18 87.45% 93.50% 95.63% 99.32% 99.50% 95.08% 

CWT-ECCN 95.78% 99.11% 99.77% 99.85% 99.93% 98.77% 
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(a) WT-MLCNN 

   
(b) MSCNN-CapsNet                                       (c) ICN 

   
(d) ResNet-18                                       (e) CWT-ECCN 

Figure 7. Comparison of confusion matrices for different methods 
图 7. 不同方法的混淆矩阵对比 
 

由表 6 和图 6 可知，随着信噪比减小，诊断准确率都明显降低。而本文所提方法 CWT-ECCN 在所有

噪声环境下均表现出最优的性能，平均准确率达到了 98.77%，尤其在−5 dB 的强噪声干扰下，其准确率

仍能维持在 95.78%，展现了较好的鲁棒性。 
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(a) WT-MLCNN 

 
(b) MSCNN-CapsNet 
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(c) ICN 

 
(d) ResNet-18 

https://doi.org/10.12677/mos.2026.151005


穆雪燕 等 
 

 

DOI: 10.12677/mos.2026.151005 54 建模与仿真 
 

 
(e) CWT-ECCN 

Figure 8. t-SNE feature visualization of different methods 
图 8. 不同方法的 t-SNE 特征可视化 

 
由图 7 的混淆矩阵可知，在−2 dB 噪声下，CWT-ECCN 呈现出清晰的对角线分布，四种状态几乎没

有发生混淆，其他方法则或多或少出现了明显错误分类的情况，特别是内圈故障与复合故障，两者特征

存在的相似性与耦合性使得解耦性能较差的网络出现了误判，而对本文所提方法则没有大的影响。 
由图 8 的 t-SNE 特征可视化进一步可知，CWT-ECCN 学习到的特征类内聚合度更高、类间可分性更

强。这得益于 CWT-ECCN 的协同设计：CWT 完整保留了高分辨的完整时频信息；ECCN 前端的各轻量

化卷积展现出了良好的特征提取性能；时频注意力机制使得模型聚焦于更加关键的时频特征，归一化注

意力机制则更加专注权重更大的通道，一定程度上削弱了噪声的干扰，突出了故障特征；后端的改进胶

囊网络能稳健解析特征间复杂关系，进一步实现高效准确的故障分类。 

4.4.2. 不同数据集和不同工况下的性能分析 
为进一步检验框架在不同数据集和不同工况下的泛化能力与鲁棒性，特别是在实际工程中常见的变

载荷条件下的故障诊断性能，采用了东南大学(SEU)轴承数据集进行跨数据集验证。实验选取了两种涵盖

不同转速与负载的典型工况(20 Hz-0 V 与 30 Hz-2 V)。数据处理方式和样本构建方式与 4.1 节保持一致。

故障类型包括健康、内圈裂纹、外圈裂纹以及内外圈裂纹复合故障四类；每类故障均选取 400 个训练样

本和 100 个测试样本。诊断准确率结果如表 7 所示，模型对比结果如图 9 所示。 
 
Table 7. Accuracy under different working conditions on the SEU dataset 
表 7. SEU 数据集不同工况下的准确率 

模型 20 Hz-0 V 30 Hz-2 V 平均值 

WT-MLCNN 96.43% 96.68% 96.56% 
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续表 

MSCNN-CapsNet 70.17% 95.55% 82.86% 

ICN 99.86% 97.94% 98.90% 

ResNet-18 98.40% 97.30% 97.85% 

CWT-ECCN 99.45% 99.00% 99.23% 

 

 
Figure 9. Comparison of accuracy of different working conditions on the SEU dataset 
图 9. SEU 数据集不同工况下的准确率对比 

 
由表 7 和图 9 可知，在 SEU 数据集的两种不同工况下，CWT-ECCN 再次展现出卓越的诊断性能和

领先的稳定性。两种工况的诊断准确率都很高，分别达到 99.45%与 99.00%，平均准确率为 99.23%，相

比其他方法高出 0.33%~16.37%。需要指出的是，对比模型 WT-MLCNN 和 MSCNN-CapsNet 虽同样利用

了时频变换生成的输入，但在噪声与变工况下仍存在特征保留不足和解耦能力有限的问题。而 CWT-
ECCN 不仅能在单一数据集条件下实现精确诊断，还具备良好的工况迁移能力与环境鲁棒性，能够有效

应对因转速和负载变化带来的特征分布偏移问题，具备出色的泛化能力与工程适应性。 

5. 结论 

滚动轴承在实际工况中易发生多部位同时损伤，形成复合故障。为解决传统方法在时频信息保留与

解耦能力方面存在的局限，本文提出了一种基于 CWT-ECCN 的复合故障诊断框架。该方法通过 CWT 生

成高分辨二维时频图，完整保留信号的瞬时频率与能量特征；构建了卷积注意力层进行高效特征提取和

关键时频信息聚焦；改进自注意路由的胶囊网络，设计了 GCM 模块，有效缓解了胶囊网络在长程依赖建

模和计算效率上的核心痛点，增强了故障解耦能力。综合来看，本文方法可以高效地实现复合故障诊断。

在 HUST 和 SEU 两个公开数据集上的实验结果表明，CWT-ECCN 在噪声干扰和变工况下的平均诊断准

确率分别高达 98.77%和 99.23%，展现出卓越的性能与泛化能力。未来工作是将诊断任务拓展至包含更多

故障类型的复杂工况，以全面应对真实工业场景的挑战。 
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