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Abstract

To address the problem that fault features become coupled when rolling bearings suffer from
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compound faults with multiple coexisting damages, making single time-domain or frequency-do-
main analysis insufficient for effective representation, a compound fault diagnosis framework
based on Continuous Wavelet Transform and an Enhanced Convolutional Capsule Network (CWT-
ECCN) is proposed. First, the one-dimensional vibration signals are transformed into two-dimen-
sional time-frequency representations using CWT. Then, an efficient feature extraction front-end is
constructed by integrating lightweight convolutions with dual attention mechanisms. Furthermore,
a capsule structure capable of modeling long-range dependencies is designed, where the correla-
tions between capsule layers are computed through a self-attention routing algorithm to achieve
fault feature classification. Experiments on two public datasets, HUST and SEU, show that the pro-
posed method achieves average diagnostic accuracies of 98.77% and 99.23% under noise interfer-
ence and varying working conditions, respectively. The results demonstrate that the method can
effectively identify compound faults and demonstrate superior robustness and generalization.
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1. 518

RN ARG BN A RS R AT,  HISATIRS EI B R E 1 5 2 et [1]. 2R, K
FER R BT B RS AR N A, IR HhR ) S B EEHE L b AR 57 4 2 BLIR A T A i
b, FEEBE R RESEOR ARSI BN A TI[2]. Bk, AT B R IR AS R S RS
HAEEN TR L.

AR, B TR L 2 ST )R RE R aei2 W ik 8 A L 0 K Y 1 Sl RRAIE S I RE 1 A i 81 g 22 5] A X T 43
2z BHI[3] Xu SE[A15 ik i) 2 R BRI M 2%, H RS W 1 2 2 M AR IR 1R b ;
PR SRS [S14R HEB N B AL M2, RI/MNECERUZR B A G LLSR T 845 5 (1 SRR A2
512 Wang S5 [6]3% Hi & 2 C-ECAFormer 35 527t | /MNEEA 59 R ik iz i ik pg . SR, Lk
WHFER 2 BT A — e S IR, SEBR ok 5oy, RSB AT A DA 22 B J R A7 10 B2 5 T 3 UAF 1
ERE Gihs. ERaMbET, ARSI ARG IR, HLER 2 HAECURT, S5
W E R, faFE ik thE m[7].

BRI — A, BB DT R RE TR N E GRS WiITi%, B R 5 i RE s
FLA R BB TC . Huang S8 N[]HRH 1 26T 2 AR%E 22 I — HEIRFEG R 4%, %070 Ll
A B AR TR AR & d i, Cui SE[9145E A O LM TR 2 2], A R T /0 k¢
KA TR AR WER; Liang SE[1018] F/NBEAR BRI —4E SURFAE, IR A A B B 2 i 45,
SKINR A R GRS W RN, BLETERE TR M 4%, HAEMAL B AF 12 2 4l R,
Gy ERFHERI SRR R, I HAER THAEE 5N i N S S0 R [11].

FEERT ST, REM B I ANSMFR S W0 Z MR &L o (RE) Mah Sk, F
BURBEFHIERIALE . BB EEL, EEMHTAHE R R R . Huang S5E[12]48 H TR #AER
M2 2%, 2R 2 I R R AR 72 A%, ORI B 5 b 5 P Bl A s L 5%
N[13]$2 i —F WavCapsNet )5 &t SiZ i 7%, S 1 ihsis Wb R 78 P SR 7 v (A3 B R AN ] ke
e Rk, A AVFE - ERNRR: HE—, R T8 —matr, LR 281
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s, BEMHI 2R IR A RE 0 5 &, L, Am BRI RO B s . RHIE R AR, IR
PR SRR, K=, Rima Mg M E R E “ oty - AR KR, 0[R2 B R [ o
A

N R BRI, AR SR T — e SR i RN AR RN S A T R 4 1) R B 2 T AE
ZY(CWT-ECCN), fRE 1 Se RIS S, S 1 JBJE 00 4 0 52 ik s R A v R e

2. EXFHE
2.1, FEENRETER

HE42/N AR i (Continuous Wavelet Transform, CWT)CA—ANAISPRE . alfH4E (BN ONAZ, 6 — 4R
S ST P RMERDELL G, M3 4R GRmE[14], BERT AR WUE S R - SEREE 71,
SCRENE TR 52 R A b b IS MR R IR . T AR E AR FES B, R R R R A
e M IRARREA ORI B A RN, B ik RS 5Pk . AT

+00 * 1 +00 * t—b
W, (ab)= [ f (t)y, (t)ck -5 [t (T)dt M
Her, ab AHINRESHEGFESE: | () FoRBEHENEES: w(t) ARNEEREL o (1) RIS
e W, (a,b) MIAME SERE RES T~ 12 R4

22. EHARNE

AR T AR B GAER )2 T ORI i, il 1 s, BRI EER
REMMIIERS AL 55, RARE ] 70 ER[15] SR GRS A R T, KigED> S8R
[ sf S 1308 3 1) 5 5 5 G P AR FEARFAE BRI, A DRAIE RS BE AR SR F I 4 1 R R AN HE B A
F AR R Z AR KR KB R[16], AESEOT A5 RS2 B, iR 2 S #laEm 2 JRUZE R,
1 90 5 X IR S RFAE RRCRIBE 7T BUAN, FEAS[RIR BE SRS VE RN 1 XU S L] AR JE NI
AR 272 2] B A AN 51N 50 7 A [17], W R ) R s A OGBS B S 3B, AR AR
FEURJE TR VA — P38 T8 73 7 [18] FAR e AL , ™ S 5 HL ) A0 e i 45 02 » I LS # BB B 32
31| 256 FEAGBUR UG K, H OREI 75 B R I 2R AR P 3R T
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Figure 1. Structure of the convolutional attention layer

E 1 sREIENEEHE

DOI: 10.12677/m0s.2026.151005 43 e RSE TR


https://doi.org/10.12677/mos.2026.151005

e
L
)
48

BRERNERZMEREES IS FEA, RETER— DTSR B4 R SR A
., BERSAEHEMRRL RO T R T 2 2 R 2 RS R

2.3. RREM%

231 ETFEENEHMEEMLE

FESE AT SRR AL SRR, HE— P BT B W 2% Sl 4 ASEBURFAE R R 5 702K

RIEM 25 LLi B ) “IREE” Bon B AL SehE Mg hiobr B & T, XA BT RENS RN g iy
MR ERER LB SR (AL B 7 RUEZSS), RA7 T EFERE S IR A B AR KRR SR 7
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Figure 2. Structure of the self-attention routing mechanism
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o, Jd, T RRFHINGRE N, RN SCBURS A FR K0S e 6 A 2 I A A 1S
e, A RSK R T AR TE S U TR R AR A 2R O .

exp(Zm ﬁ:,n,ynm))
G (5)
Z"Hl EXp (ZW AY%“L”M) )
%, mR¥EE LN AR
41 (30T I I
S = U(iv”m:i) x (C(iynm) + B(iv"m)) )

2.3.2. £/ LT iR ER
ARCHH T —F 4/ BRSO s (Global Context Module, GCM), B IRINIARRZEM 4%, %251
AT LA IE N B 5SRO B BERRAE, [N U A ke e g, A 3 R

LITPANE 3 2 FE BIRE iy A sE b R e
0000
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Figure 3. Structure of the Global Context Module (GCM)
E 3. £/ ETERRIR(GCM)EHTE

B, BRI s ROV (b B OBHRK D N MBS D MBI, BRI
B2 5 BB S EAE BT TG00, AR A2 b TSR T 2 e RPN, ST 4 I Wi
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BoJS, R — 5 R S TR RSN EG AR 5 > R B (] () AR LR EAR R, IR AE O — (L BTERE )
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Horfr, W, e RMM FIW, e RM™ G35 BEAE AN THAE AR 3 AL LA R M = max(l ﬁj IR YL 1
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HNERYELL A o fAF Sigmoid pR 3L
&, BERIER N E a BRI IAIR IS, SRS Ml s
s'=s0a 9)

SJR BRSO SRR S B R LB T D RE AN P RN o AR BT SCHE SRR BR 4 D
AR, EANERERES: BIER BB K R EE LS. XAIEZ S RE B
TR T — AN AT AR B 1 R 2%

3. &F CWT-ECCN HYRzhil#AE & FEISHHER

AR T SN A e 5 O SRR BN 45 (1 5 G b2 WTAE SR, dr 44 CWT-ECCN (Con-
tinuous Wavelet Transform—Enhanced Convolutional Capsule Network), #{ARZE/U1E 4 Fin. ZHEZEE S
PN FH: 55— U A SN A B (CWT) X s D& G 1R sh il A& IR sh 5 5 AT I AT AR 46t
AR YRR, OREE S S T B AR, SRS BRI SR U BES, RN A
THREHERIRFEMZS(ECCN): F5E, @il HBRVERE I E RO R M AV ZIR TR, B4 GCM
FhRE R BERAAEACE, WY ORATE R )RR RE /), ARSI B R e R R R SRR, &
2Ol L2 YOS H R B AR R B R R T o e S R S TR 1 A A D R
BRAEL, 0 AT BRAE ) S0 3 DAt 2 P BBl A Bl ) SR I izt I, DUV DAl I ) 525 R 2 01
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Figure 4. CWT-ECCN-based framework for compound fault diagnosis of rolling bearings
4. EF CWT-ECCN HURBNHA S & SIS HESS

Tk, BRI GR FH 1 545 0% i £ (Margin Loss Function), A 3Ch:
L =T, max(0,m* =)’ +2(1-T, )max (0, Ju | -m")’ (10)

v, kKON L ORI K IRIRRTIR: T, 9 SRR R B (O R IERI 1, HHREL0); v, | iR
AR mtOy ES, H0.9; mTOATNAE, HL0.L; A NI REL, HL05.

m

DOI: 10.12677/m0s.2026.151005 46 e RSE TR


https://doi.org/10.12677/mos.2026.151005

e
L
)
48

4. ERWHERER SR

NEGUE CWT-ECCN TEIR B A & A W2 Wb 10 R S8, 0 e rh R R S il AR s
£E(HUST) AR 1 K 22 A8 SRR B0 2 (SEV)HEAT T W Al o A skt LR 3G . FiT sE36 376 Windows 10 RGiH
B R T, fEiE SN Python, VREES:SIHESE )y TensorFlow, ffi4HCE 4 Intel Core i5-9300H Ab¥i 2 Al
NVIDIA GeForce GTX 1660 Ti GPU.

4.1. BIBENBE5IE

Herh B K 22 (HUST) A LAl R $d 45t Spectra-Quest WU 925 & R4, SEIREE W& 5 .
FrillEh AT 58 ER-16, SREESIFR N 2560 Hz. SZUGIEEL T iZ 300 475 65 Hz (3900 rpm) it T 1Y Ffi i 77
FMEERDIRAS : (8. P BBl R . AL P s AT P 1 P o i 4R

O #EEEHR @ Wil © fil; @ IEEERSE; © Mk, © BREFR

Figure 5. Experimental test rig of the HUST bearing dataset
5. HUST #7A SRR &

PR B A IRSNE 5 1% 1024 58— DI FEA, W3 M 20K 500 & 4 CWT i 128
x 128 R~F 1) RGB I #il&l . &2k By R4 500 MEA, B G 4408 8:2 tufil5e il 4 5 MR 4 %114y,
AN bR S BE B AFEAR AT 2 1 fis. NFRRBEALER M, AT A sLiR EE 10 IRFFICTF 41 .

Table 1. Data labels and distribution
=1 BIEmERSH

FEARBUA
A T PR
Pl T4E
{8 100 400 100
P B it e 010 400 100
A1 B g 001 400 100
5 A 011 400 100

42. BRESHIRE
KA E A ECCN IR E = MmN, BARSERE Ik 2 . 8EE/FE#HE T —4uin
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PRSI AR e I o BRI ZRIRE K F Adam LAk 28 » 2% ) 2R H RS i 77 3, #1465 21 %24 0.0002,
FFE A 0.97, Batchsize 25 20.

Table 2. Structural parameter design of ECCN
F 2. ECCN &5 #ugit

JZ3 Ep RS A YNANGA'S fth
0 TN - (128, 128, 3)
1 FRfEE A 3/2 (64, 64, 32)
2 W 7 G BHEICE R k% =2) 31 (64, 64, 64)
3 REEGR 3/2 (32, 32, 64)
4 B A R 71 (32, 32, 64)
5 RET 7 EAB 31 (32, 32, 128)
6 WEBRHEZIKER @ KE =4) 3/2 (16, 16, 128)
7 AR A - (16, 16, 128)
8 RT3 AR 5/2 (6, 6, 256)
9 GIEAE 95 - (32,8)
10 A JRy BT SCHE SR AR R - (32,8)
11 [ AE 9~ - (3,16)
12 vtz - ®)

KA SR E 5L T LR FME IR TR EH R, BELICHRE. IZGReEE S5 EY
R TAT. B, K CWT 254 5 I A R ST B8 o 128 x 128, AN[A] ST HE 5256 B 42 3 firw .
FHEEZ T, 64 x 64 JGF R 73 HR A & S80S BRRFIE R 2R, BUSHERIZE T FF; 11 256 x 256 JU~] B RE
YRR REIE, AR T RENSEIUR SIFEITAE: 1M1 128 x 128 (1) R~F 75 41 BE SCHE I A4 35 5 i 15
FA 2 VS T, HLR, AR TEM A I AE MR E L, i E 32 x 8 x 16 (WK HE)ZEE N x WK
BZYUESE Dy x SR TEZYEE D) NIAEA S, XTSI 4 s, 7EFTA L 100%AE R R 1R E
o, AZH A WIGRFERT R, AT HARALE, R HAECRIERFERIE 1 R e/ Mb T e B e . [
B, SRIG R I I B AR (8 4E), RRIERIASZ IR 8RR A B MR i s (24 48) W51 RS HOT
RGPS e, 32 x 8 x 16 BCE IV THRHERIE ST TR, i e AR (st i -

Table 3. CWT time-frequency map size experimental results
= 3. CWT BB R T IG4E R

CWT AR R i /s HER 1% SR
64 x 64 164 99.78 490,399

128 x 128 195 100.00 657,311
256 x 256 278 100.00 1,059,323
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Table 4. Capsule network hyperparameter selection experimental results
4. REMESBIRFEILWER

N x D1 x D2 I [)/s TEF%/% ZHUN
64 x 4 x 16 278 100.00 65,8211
32x8x 16 195 100.00 65,7311
16 x 16 x 16 221 100.00 65,7053
32x8x8 243 99.87 45,4559
32 x 8 x 24 213 99.28 56,0063

4.3. jHRESELE

D EE— 2 [ W] 2% QB AL RS 3 A PR RE DRk, ASHIE TT DL 4454 CWT-ECCN YA AL, o A Bk
T BCE VRS . B — R SRR B 4 AR I AR AE G A B RS B 1 XUE B omL],  H BAX EERHAE
SEMUBEH A RCR s B o B VR R B O s A B SR G 3 4K), BRI TEREE B LI RO B s A
M = AE SE B (Bt EARRR 1 40Jm) BR SCIG IR, DURAALH TR . Dy SRR R AN 45 SR AT X )
P, SEIRAERENE S BN -2 dB (EMELL R i A, SKIR S5 R INEE 5 TR

Table 5. Results of ablation experiments
5. HRELIGER

B 24 R I [Fl/s HER 1% SN
[ Eith 204 98.68 1,577,911
A 257 97.78 51,014,188
REAY = 205 98.25 657,019

CWT-ECCN 195 99.25 657,311

1% 5 RN, A SE R AR HEG ARG, Z4RIA ] CWT-ECCN 1) 2.4 1%, HERRANEA 1R,
VLA SO 1B AR B 0 R AE DRSS AL SR HURE /0 O RTHR T REVS 25 PR IR R (0 SR 2% FE AN ST 4 . At
B, BRSO T SRR Bk, RN 405 T 27%, SHCERIEIEA, HAEm T T
1.47%, RYIAEE AR BRI R RAT I Lg%k, A=, GCM kR
gER, AN 292 NS HL, EGHERRRIETE T 1.0%, HISATEI SR, 0IE T AR R SN 4 R Ok
SRITHREEIEN, RN ZEESS 8RR m B e S e DR F A, 3E—B 5T T
R (R AR 2 T e

4.4. FFLLSELE

NEGAUE CWT-ECCN Z3 AIFEME 5 528 T8 N s B2 W i 2 M2 AL RE /0, AR SO DL IR B2 27 2
J53:(WT-MLCNN. MSCNN-CapsNet. ICN. Fl ResNet-18)#k4T 1 Xf Eb 5286 . A T ULECrI5AE 5%, o RIL%
IZHORAT T, WSS AAInT:

1) WT-MLCNN: Liang %5 A$& I 24558 G WBEIZ WELE, 1277 0 /N AR 46 42 B Fr) vt 45 Pl N
BB ETRIEMZE (S 6 MERZ. 4 MBALE), KA Sigmoid 4 Hh AT = 7658 XU R 24T Il ks

2) MSCNN-CapsNet: Li 55 NH&H, H 77 150 J i B kA8 6 A pl i 0T Bl g N 28 — A =l iE 2 RUE
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3) ICN: ZEPI7E NFEH, HEHEMR T HERZ. Wbz, SE SR Bt mfRER. K
A EMA 45T, AT, AP, R ARy e A ;

4) ResNet-18: He %5 A A MIRZIRZEMLE, t1 1 DMIGEBZM 8 NMAZERRA K. AIERN
ZIREAT S, HAh Z 1B 80N Sigmoid B3, IR oo SUB TR R EEAT AL .

4.4.1. BEMETRMERESH

1T SE PR R AR HOIR NS 5 AN W] G 15 2 % P A5, UG 06 CWT-ECCN 7EME 75 75 5N K& R L,
AT R AGHHE M T BA AR e EE(SNR) A i R A, S0 T0Ah 7 VA R o RE AT SR 06 DA
SRt 6 MIE 6 From. NMETERXEE, K7 A 8 73 nlfEoR 7 —2dB (ZWEEL S, LAt A2 iR
FERE LA B L t-SNE B4 J5 FRHIE 20 A1 15 DL«

WT-MLCNN MSCNN-CapsNet ICN
100 ResNet-18 CWT-ECCN
AN
o
M’ 80
£
&l
60 T T T T T T T T T
-5dB -2 dB 0 5 dB 10 dB

Figure 6. Comparison of accuracy of different SNRs on the HUST dataset
[ 6. HUST HiR&E T EEMEEL TRV /ERMZRITEL

Table 6. Accuracy of different signal-to-noise ratios (SNRS)
= 6. TEEMREE TR ERZER

M7 /dB

i)
-5 -2 0 5 10 FHIME
WT-MLCNN 91.20% 96.20% 96.38% 98.38% 99.03% 96.24%
MSCNN-CapsNet 63.40% 81.70% 87.70% 92.28% 96.85% 84.39%
ICN 93.25% 97.04% 97.73% 97.88% 98.19% 96.82%
ResNet-18 87.45% 93.50% 95.63% 99.32% 99.50% 95.08%
CWT-ECCN 95.78% 99.11% 99.77% 99.85% 99.93% 98.77%
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Figure 7. Comparison of confusion matrices for different methods
B 7. NEIFENR B ERERTEL

174 6 AT 6 I, B (5 0 ELiRl/), 2 W HE R A A S A 1A SO §2 575 CWT-ECCN 1EfT Y
W FE I N BRI S AL VERE, P IHERARIA R 1 98.77%, JUHAE-5 dB HYSRMEA LT, HAEmER
TIRELERRAE 95.78%, FEHL 1 BUUF & HE 1L .
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Table 7. Accuracy under different working conditions on the SEU dataset
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