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Abstract

Resin matrix composites, due to their excellent physical and chemical properties, are widely used
in aerospace, automotive, and shipbuilding industries. The curing deformation process directly
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impacts the performance and reliability of the components. In this study, an L-shaped component
made of thermoset resin matrix composite 3234 /T300B is selected as the research object. A finite
element analysis model is established, and Abaqus is used to simulate the curing process, analyzing
the effects of curing temperature and lay-up angle on the curing deformation of the L-shaped compo-
nent. First, the curing deformation behavior of the L-shaped component under different curing tem-
perature regimes is investigated to determine the optimal curing temperature. Then, by changing the
layup angle at this temperature, the influence of the layup angle on curing deformation and func-
tional integrity was studied. The research results can provide a reference for the optimization of the
curing process and engineering structural design of resin-based composite L-shaped components.
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Figure 1. Dimensional parameters of L-shaped components
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Figure 2. L-shaped component model diagram

[E 2. L ¥R E

Figure 3. L-shaped component grid model
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Figure 4. Stacking direction settings
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Table 1. Physical property parameters of 3234/T300B laminate
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1230 1260 5.43 0.41 4015%105 1494101 94750 045 1.887
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Figure 5. Diagram of the variation of material curing degree with temperature
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Figure 6. Comparison cloud maps before and after deformation at various simulation temperature
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Table 2. Summary of maximum midpoint displacement at the top under different temperatures (mm)
% 2. TEIRE TS R R KR A BT (mm)

Ak 396 K 398 K 400 K 402 K 404 K
X &7 0.5448 0.5559 0.5670 0.5782 0.5893
Y Hh77 A 0.0065 0.0066 0.0067 0.0069 0.0070
Z g 0.1086 0.1108 0.1093 0.1153 0.1175
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WA G, (HAHELT 400 K RE i, HASTERR L), Aehs@ foid AT S B 45 H AR ) L
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¥ it B2 V1% 0 398 Ko il AN BENS A1 AR MBI AT, W IR [ RE (Y S8 B, IR RE SRR
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Figure 7. Comparison cloud maps of deformation before and after at various ply angles
7. BN HERAETHERAIEX L E

Table 3. Summary of maximum deformation data at the apex (mm)

= 3. Tk AER 2B EHELE (mm)

HEMAE
A b [04] [+454] [-454] [904] [0/45] s [0/90] s
X Hli 75 ) 0.5559 0.5099 0.5099 0.0221 0.6157 0.6548
Y 77 1) 0.0066 —0.1572 -0.1572 —0.3681 0.0030 -0.0128
Z 771 0.1108 0.3200 -0.2116 7.48647E-16 0.2368 0.0101
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Table 4. Summary of maximum deformation at the lower end (mm)
4. Rinm AT S REEELE (mm)

ﬁébﬁ%é\\\\\\?ﬁfﬁfﬁgg [04] [+454] [-454] [904] [0/45]s  [0/90]s
X 77 1) —0.1000 -0.1689 —0.1689 —0.3400 -0.0072  -0.0201
Y 7 1) 8.77451E-07 -0.1175 -0.1175 -0.0059 -0.0109 0.0092
Z 5 ] —1.20215E-08 -0.3410 0.4494 -1.22823E-15  —0.2224 0.0199
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