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摘  要 

针对支路汇入型道路因支路与主路交通流交互频繁、时空分布波动显著，数据采集效率偏低等问题，本

文开展支路汇入型道路车流量模型构建与预测研究。论文结合实测交通数据，系统分析支路车流汇入主

路的演化规律与特点，构建了两类支路汇入型道路的函数关系模型。在此基础上，运用分段线性回归和

SLSQP算法对相关模型参数加以估计，并对相关时刻的车流量加以预测。进一步，论文对车流量采样时

刻进行优化，利用贪心算法确定最少的观测采样时刻。优化后的采样策略在确保模型可靠性的同时，可

降低支路交通监测成本。因此，论文的研究成果为交通管理提供了一定的理论价值和参考。 
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Abstract 

This paper addresses the issue of low data collection efficiency at roads incorporating branch con-
nections, which is caused by frequent interactions between traffic flows on slip roads and main roads, 
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as well as significant spatio-temporal distribution fluctuations. It investigates the construction and 
prediction of traffic flow models for road incorporating branch connections. By integrating actual 
traffic data, the study systematically analyses the evolutionary patterns and characteristics of traf-
fic merging from slip roads onto main roads. This establishes functional relationship models for the 
two main categories of roads incorporating branch connections. Based on these models, segmented 
linear regression and the SLSQP algorithm are employed to estimate relevant parameters and pre-
dict traffic volumes at specific times. Furthermore, the paper optimizes traffic sampling intervals 
by utilizing a greedy algorithm to determine the minimum number of observation points required. 
This optimized sampling strategy reduces monitoring costs for slip roads while maintaining model 
reliability. Consequently, the research findings offer both theoretical value and practical guidance 
for traffic management.  
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1. 引言 

近年来，我国城市建设加速使道路网络复杂化，给交通监测技术带来了挑战。国家统计局 2023 年数

据表明，城市主干道监测设备覆盖率超 90%而支路不足 40%，监测覆盖率差异导致难以全面精准掌握交

通状况。现有监测数据分析存在三大问题：多支路车流间复杂非线性相互影响解析困难、交通信号灯变

化引发的车流量突变难以精准刻画、监测设备数据存在误差时准确结果的推算问题亟待解决。 
目前，车流量预测研究主要采用方法包括基于微分方程的动力学模型[1] [2]、统计学方法[3]、机器学

习[4]和深度学习[5]等。上述方法在应用研究中各有优劣，例如回归模型[6]在简单道路网络中效果较好，

但无法应对信号灯切换导致的流量突变；基于 LSTM 神经网络方法[7] [8]分析交通流数据有很好的效果，

但存在结果解释性不尽如人意。此外，现实中道路多为多支路汇合型，涉及车流的多向交织过程，冲突

点数量呈几何级增加，剐蹭、拥堵风险更高。然而，现有方法因参数敏感、计算复杂等问题，不易满足实

际工程实时分析的需求。 
针对上述问题，论文针对双支路汇入型道路车流量展开研究。在分析支路车流汇入主路时的演化规

律的基础上，本文建立了具有严格的车流量演化函数模型，并采用序列二次规划[9]-[11]这一优化算法来

求解支路车流量函数的各项参数。结合构建的模型，我们成功捕捉了支路 1 的线性增长和支路 2 先增后

减的变化特征，实现了对支路车流量精确预测。进一步，论文对更为复杂的四支路汇入型道路车流量进

行建模和探究。由于各支路具有不同的流量特征和时间延迟效应，这给模型分析带来了一定的挑战。为

此，我们利用带有条件约束的平移算子，对相关支路车流量数据进行“时间校准”，使数据在时间轴上

按需前后移动至正确时间位置。通过数据拟合与分析，得出模型参数，并对相关时刻的车流量进行了合

理预测。实现了对稳定流量、分段线性变化、增长后稳定和周期性波动等多种复杂流量模式的识别与分

离。最后，为降低数据采集的经济成本和时间成本，实现交通流量观测时刻的优化，论文通过深入分析

不同类型车流量函数的特征，并利用贪心算法来选择车流量采样的关键观测时刻，从而在保证预测准确

率的同时降低了数据的采集量。 
本文研究问题和数据来源于“五一”数模比赛 A 题[12]。 
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2. 双支路汇入型道路车流量分析与预测 

2.1. 问题陈述与分析 

考虑如图 1 所示的双支路汇入型道路，支路 1 和支路 2 的车流同时汇入主路 3。假设仅在主路 3 上

安装了车流量监测设备 A1，每 2 分钟记录一次主路的车流量信息，车辆从支路汇入主路后行驶到 A1 处

的时间忽略不计。由历史车流量观测记录[12]可知，在[6:58, 8:58]时间段内，支路 1 的车流量呈现线性增

长趋势，支路 2 的车流量呈现先线性增长后线性减少的趋势。 
 

 
Figure 1. Dual-lane merging carriageway 
图 1. 双支路汇入型道路 

 
为避免和缓解支路车辆汇入主路时易引发剐蹭、拥堵等现象，需要人们根据主路监测数据，建立数

学模型推测两条支路的车流量函数，对车流量的变化规律进行数学描述或刻画。因此，论文将构建合理

可行的数学模型，并结合相关数据确定模型参数。 

2.2. 模型构建 

结合双支路汇入型道路结构，我们基于交通流量守恒原理建立数学模型框架，考虑支路 1 的严格线

性增长特性，采用线性函数来描述其流量变化，其斜率严格大于零，以满足单调增长的约束条件；对于

支路 2 中车流量呈现出先增后减的变化特征，本文采用分段线性函数进行刻画和描述，具体如下： 
设支路 1 车流量函数为： 

 ( )1 1 1f t a t b= +  (1) 

设支路 2 车流量函数为： 

 ( ) 1 1 0
2

2 2 0

,0 ,
, 59.

c t d t t
f t

c t d t t
+ ≤ ≤

=  + < ≤
 (2) 

那么，主路车流量函数为： 
 ( ) ( ) ( )1 2F t f t f t= +  (3) 

其中 1 0a > ， 1b ， 1 0c > ， 2 0c < ， 1d ， 2d 为待确定的参数。同时，所有时段的车流量均须大于等于零，

即 ( )1 0f t ≥ ， ( )2 0f t ≥ 。 
另外，模型中车流量变化规律的转折点是影响模型有效性的关键，故还需要确定转折时间点 0t 。为

此，我们设置偏差函数 ( ) ( ) ( )1F t F t F t∆ = + − ，该函数在转折时间点附近将出现明显的变化，从而可确定

出一个合理的转折时间。 
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2.3. 模型参数确定与分析 

结合相关数据，利用分段线性回归和 SLSQP 算法[9]-[11]求解车流量演化模型(1)~(3)的参数，得相关

参数如下： 1 0.30a = ， 1 2.298079b = ， 1 1.2681c = ， 2 0.7984c = − ， 1 2.8690d = ， 2 64.864d = 。 
进一步，对观测数据进行可视化与分析(见图 2)可知，主路 3 及其两条关联支路的车流量呈现出鲜明

的动态特征。在 60 分钟观测期内，主路 3 的实际车流量(粉色虚线)与预测车流量(橙色虚线)高度吻合，

均展现出显著的波峰形态。流量从初始约 20 辆稳步上升，在 30 分钟时达到峰值约 50 辆，随后缓慢下降

至约 38 辆。与此同时，两条支路的车流量表现为相对平缓且稳定的趋势。支路 1 车流量(浅绿色区域)以
较低的基数缓慢攀升，最终稳定在约 5 辆左右；支路 2 车流量(紫色区域)也呈现出相似的平缓上升态势，

最终稳定在约 10 辆水平。该图清晰表明，主路 3 承载了区域内主要的交通负荷并呈现明显的时段性高

峰，而支路 1 和支路 2 则作为次要路径，其流量水平显著低于主路且变化幅度较小，表现出更强的稳定

性。 
 

 
Figure 2. Traffic flow sequence variations for Main Road 3 and its associated branch roads 
图 2. 主路 3 与关联支路车流量时序变化 

 
图 3 描述了主路 3 与关联支路的车流量在 60 分钟内呈现显著的协同演化规律：1) 主路 3 实际车流

量(粉色实线，主坐标轴 0~50 辆)与预测值(黄色虚线)高度吻合，二者在 0~30 分钟区间同步增长 120% (20 
→ 40 辆)，于 30 分钟达峰后回落，印证预测模型的可靠性；2) 支路分流特性：支路 1 车流量(粉色实线，

副坐标轴)维持恒定低值(5 辆)。支路 2 流量(黄色实线)呈先导性变化，0~30 分钟匀速增长至 40 辆峰值(增
幅 100%)，并于 t = 30 分钟通过黑色虚线明确标识拐点，此后线性下降，其拐点与主路峰值完全一致，表

明了模型的有效性。 

3. 四支路汇入型道路车流量分析与预测 

与双支路汇入型道路不同，四支路涉及四组车流的多向交织，冲突点数量呈几何级增加，剐蹭、拥

堵风险更高。那么，对四支路型车道的管控将更为复杂和困难，因而需对其车流量变化规律进行建模与

分析，从而为制定有效的道路车流管控策略提供一定的理论支持。 

https://doi.org/10.12677/mos.2026.151009
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Figure 3. Actual versus predicted traffic volumes on main and branch roads 
图 3. 支路与主路车流量的实际值与预测值 

3.1. 问题陈述与分析 

考虑图 4 所示的道路，支路 1、支路 2、支路 3 和支路 4 的车流同时汇入主路 5，仅在主路 5 上安装

了车流量监测设备 A2，每 2 分钟记录一次主路的车流量信息，[12]提供了某天早上[6:58, 8:58]时间段内

主路 5 上的车流量数据。假设车辆从支路 1 和支路 2 的路口行驶到设备 A2 处的时间为 2 分钟，车辆从

支路 3 和支路 4 的路口到达设备 A2 处的行驶时间忽略不计。 
 

 
Figure 4. Schematic diagram of a four-lane converging road 
图 4. 四条支路汇入型道路示意图 
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由历史车流量观测记录可知，在[6:58, 8:58]时间段内，支路 1 的车流量稳定；支路 2 的车流量在[6:58, 
7:48]和[8:14, 8:58]时间段内线性增长，在(7:48, 8:14)时间段内稳定；支路 3 的车流量呈现先线性增长后稳

定的趋势；支路 4 的车流量呈现周期性规律。因此，本文第二个研究目标是构建适当的数学模型，根据

相关数据推测支路 1~4 上的车流量，并用合适的函数关系来描述各支路上的车流量随时间 [ ]( )0,59t t∈ 的

变化规律。同时，对 7:30 和 8:30 这两个时刻各支路上的车流量加以预测。 

3.2. 模型构建 

当四条支路的车流汇入主干道时，由于各支路具有不同的流量特征和时间延迟效应，研究场景变得

更为复杂，这就要求建立更加精细化的数学模型进行分析。结合各支路车流量特点，我们分别采用下述

方法进行建模：支路 1 流量稳定，考虑用常数函数进行建模，可兼顾精度与计算效率；支路 2 流量变化

复杂且有模式切换，考虑利用动态分段函数对车流量的变化进行精准刻画；支路 3 流量呈先增后饱和两

阶段特征，仍采用分段函数进行描述；支路 4 的车流量呈现出周期性波动特点，可考虑采用正弦函数对

其变化规律进行描述；进而可利用 Fourier 频谱分析确定主频率，构建相应的函数模型。综上，各支路车

流量的数学表达式如下所示： 
支路 1 车流量函数： 

 ( )1 1f t C=  (4) 

支路 2 车流量函数： 

 ( )
1 1

2 2

2 2

,0 24,
, 24 37,

,37 .

k t b t
f t C t

k t b t

+ ≤ ≤
= < ≤
 + <

 (5) 

支路 3 车流量函数： 

 ( ) 3 0
2

3 0

,0 ,
, .

k t t t
f t

C t t
≤ ≤

=  <
 (6) 

支路 4 车流量函数： 

 ( ) ( )4 sinf t A t Bω ϕ= ⋅ + +  (7) 

主路车流量函数： 

 ( ) ( ) ( ) ( ) ( )1 2 3 42 2F t f t f t f t f t= − + − + +  (8) 

3.3. 模型参数确定与分析 

由于支路 1 和支路 2 与主路检测点间的数据传输存在耗时差异，导致流量数据时间顺序错乱、无法

准确对应。为克服这一障碍，本文利用带有条件约束的平移算子，对支路 1 和支路 2 的车流量数据进行

“时间校准”，将原始流量函数经算子变换，使数据在时间轴上按需前后移动至正确时间位置。通过计

算机数据运算验证，车流量总量变化仍满足基于流体力学方程的车流量守恒条件，因而能确保调整后车

流量总和准确。结合相关数据，可估计出模型(4)~(8)中的参数表 1 和预测两个时刻车流量表 2 所示。 
 
Table 1. The parameters in models (4)~(7) 
表 1. 模型(4)~(7)中的参数 

(4)中参数 (5)中参数 (6)中参数 (7)中参数 

1 10C =  1 0.0001k =  3 1.6978k =  6.9221A =  
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续表 

 

1 11.32b =  3 32.2345C =  0.4581ω =  

2 11.32C =  0 18.99t =  3.7254ϕ =  

2 0.4318k =   16.3274B =  

2 4.6567b = −    

 
Table 2. Traffic volume forecast for two time points 
表 2. 两个时间点车流量预测 

时刻 支路 1 支路 2 支路 3 支路 4 

7:30 ≈10 ≈11 ≈25 ≈10 

8:30 ≈10 ≈14 ≈32 ≈11 
 

各支路车流量演化规律如图 5、图 6 所示。图 5 体现了主路及其关联支路的车流量动态呈现显著耦合

特征。1) 预测模型验证。主路 5 实际车流量(蓝色实线)与预测值(红色虚线)在 0~60 时间单位内高度吻合

(平均绝对误差 < 5%)，二者同步经历三阶段演变——0~30 时段稳定上升(20 → 65 辆，增幅 225%)，t = 
35 达峰值 68 辆，35~60 时段波动回落至 45 辆，其中 t = 25 处同步下跌 12% (55 → 48 辆)，这表明了模型

对突发干扰的敏感性。2) 支路延迟响应特征。传输延迟修正后，四条支路流量表现为：支路 1 (浅蓝色区

域)持续低负载运行(3~10 辆)且滞后主路 5~8 单位，支路 2 (橙色区域)在 t = 10~30 实现爆发式增长(8 → 
24 辆，+200%)，支路 3 (绿色区域)于 t = 50 突发峰值 37 辆，支路 4 (粉色区域)始终维持稳态(±2 辆浮动)。
3) 路网协同机制。四条支路在峰值时刻(t = 35)贡献主路总流量的 54.4% (37/68 辆)，而支路 3 在 t = 50 的

异常波峰与主路同期流量谷值(53 → 45 辆)呈现较强的负相关关系，体现出其承担应急分流功能的结构性

角色。 
 

 
Figure 5. Cooperative evolution of traffic flow on main road 5 and branch roads 
图 5. 主路 5 与支路交通车流量协同演化 
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Figure 6. Traffic flow variation characteristics on main road 5 and branch roads 
图 6. 主路 5 与支路交通流量变化特征 
 

从图 6 可知主路 5 与四条支路的车流量演化呈现显著动态关联特征。1) 主路 5 实际车流量(蓝色实

线，上图)与预测值(红色虚线)在 0~60 时间单位内波动趋势一致，二者同步经历三阶段演变：初始平稳上

升(t < 20)、t = 25 突发下跌 14% (62 → 53 辆)后持续攀升至 t = 35 峰值 68 辆，此后回落至 45 辆，模型全

程跟踪误差 < 5%。2) 图 6 下图显示四条支路分化显著：支路 1 (粉色线)维持低负荷稳态(5 ± 2 辆)，支路

2 (紫色线)存在双转折点(t = 23.8 转向减速、t = 36.0 触顶 24 辆)，支路 3 (青绿色线)于 t = 20.4 进入流量稳

定期(持续 > 25 辆)，支路 4 (黄色线)中位波动(10~18 辆)。3) 主路在 t = 25 的流量低谷与支路 3 稳定起始

点(t = 20.4)存在 4.4 单位滞后，而支路 2 的 t = 36.0 峰值较主路峰值滞后 1 单位，表明支路系统通过差异

化响应模式分流主路压力，支路 2 与支路 3 贡献主路峰值流量的 48.5% (33/68 辆)。 

4. 支路车流量模型的最少采样时刻策略 

支路的“数量多、分布散、流量不均”，决定了全时段、全覆盖监测的高成本，多数城市难以承受。

然而，车流量函数在特定时间段内具有确定的变化趋势，故可通过关键时刻的采样数据[13] [14]推测时段

内车流量变化的函数关系。 

4.1. 车流量函数特征 

针对模型(4)~(8)，支路 1 和支路 2 的车流量均为分段线性函数，呈现“线性增长 → 稳定 → 线性

减少”的趋势，各有两个转折点。对于支路 3 而言，由于其受信号灯控制，表现为周期性的分段常数函
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数。分段线性函数的最少采样点：对于包含 3 个线性段的分段线性函数，因而至少需要 4 个采样点才能

唯一确定，这些点应包括：第一段线性增长的起点，第一个转折点，第二个转折点等。 

4.2. 优化策略 

为实现交通流量观测时刻优化，本文主要采用贪心策略确定最少观测时刻组合，从而实现确保模型

的有效性。此时，该问题的数学表述为以下优化问题： 

 min S  (9) 

 s. t. E S E T r≤  (10) 

其中 S 为选定观测时刻子集， S 为子集大小，T 为完整时间序列集；E S 表示使用子集 S 进行模型拟合

后的预测误差， E T 表示使用完整时间序列集T 拟合后的误差， r 代表误差比率阈值。值得说明的是，

阈值 r 的设定并非主观取值，而是基于研究场景特性、数据特征与算法目标的多维度量化依据。一般在锚

定车流量数据的统计特性，确定“可接受误差”的物理意义，以确定初始阈值范围；在此基础上，考虑预

测精度与计算效率的平衡，结合算法应用场景调整阈值松紧。通常将阈值范围设置在 5%~15%之间。 
为确定最少采用时刻(即选定观测时刻子集 S )，本文设计的算法将依据交通流模型特性，确定关键时

刻点作为初始观测集，以均方误差为评价指标： 

 [ ] ( ) 21 ; S tt TE S f t y
T

θ
∈
 = − ∑  (11) 

其中 ( ); Sf t θ 表示使用观测集合 S 估计的参数 Sθ 对时刻 t 的预测值， ty 为时刻 t 的实际观测值。在每次迭

代中，算法评估所有候选观测点 \ ic T S∈ ，并计算增加每个候选观测点后的模型预测误差，并将能使误差

最小化的时刻加入观测集合： 

 { }( )
\

arg min
i

i
c T S

c E S c∗

∈
= 

 (12) 

 { }1i iS S c∗+ =   (13) 

为避免过拟合，算法使用误差比率阈值 r 作为终止条件，即当误差比率大于阈值 r 或达到预设的最大

观测点数量时，算法终止迭代。结合数据和算法，对模型(4)~(8)的采样时刻优化，得到最少采样时刻如表

3 所示。 
 
Table 3. Minimum sampling times for branch traffic flow models (4)~(8) 
表 3. 支路车流量模型(4)~(8)的最少采样时刻 

时刻 1 时刻 2 时刻 3 时刻 4 时刻 5 时刻 6 

07:00 07:02 07:04 07:06 07:08 07:10 

时刻 7 时刻 8 时刻 9 时刻 10 时刻 11 时刻 12 

07:50 08:12 08:14 08:16 08:18 08:58 

 
从表 3 可知模型(4)~(8)的 12 个关键的采样时刻，具体包括 07:00~07:10 时段内每 2 分钟 1 次的连续

采样(07:00、07:02、07:04、07:06、07:08、07:10)，以及早高峰中后期的分散采样(07:50、08:12、08:14、
08:16、08:18、08:58)。该采样方案既通过早高峰初期连续采样捕捉流量攀升规律，又以中后期分散采样

覆盖高峰稳定段与收尾波动特征，在减少冗余采样的同时，使模型具有较高的拟合精度。因此，优化结

果有效平衡了数据采集效率与模型可靠性，可降低支路交通监测的人力与设备成本，为后续支路流量预
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测、信号配时优化及交通管控策略提供了一定的支撑。 

5. 结论与展望 

本文主要针对两种类型的多支路车辆流量问题进行了建模分析和探究。论文构建的模型适用于城市

主干道与单/双车道支路形成的标准汇入场景，用于预测高峰/平峰期的汇入车流量，为信号灯动态配时、

车道功能划分提供数据支撑。在构建合适的数学模型基础上，论文主要运用分段线性回归与 SLSQP 算法

对模型参数进行估计，并结合历史数据对相关支路或主路上的车流量进行了预测。进一步，论文还对车

流量采样时刻进行优化，利用贪心算法确定最少的观测采样时刻。优化后的采样策略在确保模型可靠性

的同时，可降低支路交通监测成本。总之，研究提出的车流量采样策略与参数估计方法，能为同类路网

的车流量建模和实时管控提供理论支撑和参考。 
另外，本文研究也存在着一定的局限性，例如在建模时未深度融入非机动车穿行、临时交通管制、

交通事故等突发干扰项，对非稳态流量的预测效果不佳，存在着一定泛化能力不足的局限。基于本文研

究中尚存的不足，我们将在未来研究中对上述问题进行更加深入细致的研究。例如将在充分考虑节假日

等外部因素对车流量的影响，引入实时数据更新机制优化模型参数，力争将研究结果拓展至更多支路汇

入场景，并强化模型的泛化能力等。 
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