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摘  要 

随着城市化进程加快，智能交通系统对高效、灵活的交通监控技术提出了更高要求。无人机凭借其机动

性强、成本低等优势，逐渐成为交通监控的重要工具。然而，单架无人机难以覆盖大规模城市路网，多

无人机协同巡逻成为研究热点。本文提出一种基于边聚类的多无人机协同覆盖优化方法，通过K-means
算法对道路边进行聚类划分，并利用轮廓系数确定最优无人机数量，以实现对路网的高效持续覆盖。实

验结果表明，该方法能显著降低平均间隔时间和最差间隔时间，提升覆盖效率，并在不同路网场景中表

现出良好的适应性与稳定性。 
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Abstract 
With the acceleration of urbanization, intelligent transportation systems demand more efficient 
and flexible traffic monitoring technologies. Unmanned Aerial Vehicles (UAVs) have emerged as a 
promising tool for traffic monitoring due to their high mobility and low cost. However, a single UAV 
is insufficient to cover large-scale urban road networks, making multi-UAV cooperative patrol a re-
search focus. This paper proposes a multi-UAV cooperative coverage optimization method based on 
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edge clustering. The K-means algorithm is used to cluster road edges, and the silhouette coefficient 
is employed to determine the optimal number of UAVs for efficient and continuous coverage of the 
road network. Experimental results demonstrate that the proposed method significantly reduces 
both the average and worst-case idling times, improves coverage efficiency, and exhibits strong 
adaptability and stability across different road network scenarios.  
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1. 引言 

如今，随着全球城市化进程的不断加快，日益增长的道路交通流量对监视与监控技术提出了更高的

要求。智能交通系统作为现代智慧城市不可或缺的组成部分，旨在通过更高效的数据收集与分析来改善

交通管理，从而帮助通勤者规避拥堵、缩短行程时间并降低环境影响。传统的交通数据采集依赖于部署

在路侧的固定传感器与摄像头，然而其静态特性导致其在覆盖范围与灵活性上存在局限。近年来，随着

无人机技术的进步，其凭借卓越的机动性、较低的成本与易于部署的优势，作为移动传感器在交通监控

领域受到了广泛关注[1]。 
由于城市区域广阔且路网密集，单架无人机通常难以实现对全路网的有效覆盖。因此，通过多架无

人机进行协同与协作部署，以实现更优的监控效果，已成为当前的研究热点[2]。在此类应用中，一个核

心挑战在于如何在巡逻期间维持对目标区域的连续覆盖，并尽可能最小化间隔时间——即同一区域两次

被访问的最大时间间隔。 
在监视应用方面，已有诸多研究探索了无人机的使用。Hossain 等人[3]提出了在特定点部署无人机以

收集并流式传输数据至云服务器的监控系统；Khan 等人[4]则利用无人机监控地面车辆的超速与交通违章

行为，并借助 5G 基础设施实现警报的实时传输。其他应用还包括应急响应与交通管制[5]，以及理解驾

驶员在十字路口的行为决策[6]。 
在多无人机协同与路径规划方面，领土通常被建模为图结构，并通过各种策略进行划分。Portugal 等

人[7]提出利用最小–最大成本闭环寻找平衡分区以降低最差间隔时间；Ahmed 等人[8]采用遗传算法进行

图像划分，以在能耗与机动性约束下部署无人机，实现良好的覆盖率，但其间隔时间指标在连续巡逻方

面仍需改进。此外，聚类技术也被用于多智能体巡逻中的工作量分配，如 Sea 等人使用 K-means 聚类以

确保每个节点的最小访问频率[9]。 
然而，现有研究在面向大规模城市区域的实际交通监控应用时，仍需综合考虑资源、能源约束、通

信调度与持续覆盖效能之间的平衡[10]。特别是，在确保以成本效益的方式实现对路网的连续、低间隔时

间覆盖方面，尚有优化空间。 
针对上述问题，本文提出一种用于城市交通监控的多无人机协同覆盖优化方法。本文的主要贡献在

于：1) 提出一种高效的边聚类方案，用于在协作无人机团队间分配监控区域；2) 基于轮廓系数确定实现

最大覆盖与最短间隔时间的最优无人机数量，并引入空间连通性修正机制以确保巡逻路径的可执行性，

以兼顾性能与成本；3) 提出精确的基站定位策略，以提升无人机的协调与操作效率。 
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2. 问题描述 

2.1. 问题定义 

城市道路网络可以借助图论模型清晰地表示，其中交叉口及其他节点构成图的顶点，而道路段则作

为连接顶点的边。基于此模型，无人机交通监控的任务可定义为对指定顶点或边的覆盖。 
无人机从中央基站起飞，导航至预定位置执行监控任务，并在任务完成或能源耗尽时返回基站。覆

盖问题关注的是确保每个顶点或边至少被访问一次。在路径与任务规划得当的前提下，单次覆盖可以利

用单架或多架无人机完成，相对容易实现。 
对于交通监控而言，核心挑战在于巡逻问题，其核心是重复或持续覆盖。这意味着同一条道路需要

被多次访问。在此背景下，一个关键性能指标——间隔时间变得至关重要。它定义为对同一条边的两次

连续访问之间的时间延迟。最小化最大间隔时间是实现有效持续监控的核心目标。 
一般而言，单个无人机需要巡逻的边数量越多，其平均间隔时间就越长。因此，为了减少间隔时间，

必须将整个路网图划分为更小的子单元，并由多架无人机协同负责，从而将大规模监控任务分解为多个

小规模的、并行的巡逻任务。 

2.2. 基本假设 

为聚焦于核心的覆盖与巡逻问题，本文作出如下合理假设： 
1) 道路网络建模假设：城市道路网络被抽象为一个拓扑图结构 ( ),G V E ，其中顶点V 代表交叉口，

边 E 代表道路段。无人机的移动和监控任务被限制在该图结构上。 
2) 无人机移动与任务假设：无人机从基站出发，在其分配的子图内沿边移动，并采用“最少访问相

邻边优先”的策略进行巡逻。当无人机电池电量耗尽时，它将返回最近或指定的基站进行充电，充电后

可返回任务点继续执行任务。 
3) 能源与基站约束：无人机的续航能力是有限的，其能源消耗与飞行距离相关。基站的位置和数量

是优化的一部分，旨在最小化因往返充电造成的监控中断。 
4) 通信与干扰约束：本文主要关注覆盖与路径规划，暂不考虑通信延迟或丢包对协同控制的影响，

并假设空域冲突已通过其他机制解决。 

2.3. 影响持续覆盖的关键因素 

在基于无人机的交通监控系统中，实现持续覆盖并最小化间隔时间受到以下几个关键因素的影响： 
1) 基站部署：基站的选址与数量对无人机运行效率至关重要，它直接影响无人机往返巡逻区域的时

间与能耗。对于大型城市区域，若基站部署位置偏离任务中心或数量不足，将导致无人机在通勤途中消

耗大量电池能量，显著缩短有效执勤时间，进而导致监控覆盖中断并增加系统的整体间隔时间。 
2) 无人机数量：部署的无人机数量与图划分的粒度直接相关，是决定覆盖频率和间隔时间的核心资

源变量。虽然增加无人机数量理论上能线性降低平均间隔时间，但受限于预算成本、空域管理难度及边

际效益递减规律，盲目增加资源并非最优解。 
3) 区域划分：即如何将整个路网图有效地划分为多个子区域分配给各无人机。优良的划分应确保各

子区域的工作负载(如边的数量与长度)相对均衡。若划分失衡，特定子区域的无人机将因负载过重而成为

系统瓶颈，导致该区域的局部间隔时间激增，从而拉低整个系统的最差性能指标。 
4) 巡逻策略：无人机在其分配的子区域内所采用的路径规划算法，它决定了访问各条边的顺序和频

率，是优化间隔时间的直接手段。高效的机动策略能够适应子区域内的特定拓扑特征，有效消除局部监

控盲点，直接优化间隔时间的分布特性，确保监控任务的连续性与可靠性。 
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3. 模型构建 

为实现对城市路网的多无人机协同覆盖，本文提出一种基于 K-means 聚类与轮廓系数的分区优化模

型。该模型旨在将道路网络划分为最优数量的集群，并为每个集群分配一架无人机，从而在最小化间隔

时间的同时，优化资源使用效率。 

3.1. 符号说明 

将模型中使用的主要符号、集合及决策变量归纳如下表 1 所示。 
 
Table 1. Symbol explanation 
表 1. 符号说明 

类型 符号 含义 

集合 

G  道路网络图 

V  图中所有顶点的集合 

E  图中所有边的集合， { }1 2, , , nE e e e=   

kC  第 k 个聚类(子区域)， [ ]1,k K∈  

参数 

n  边的总数量 

K  聚类数量(即无人机数量) 

ia  边 ie 到其所属聚类内其他边的平均距离 

ib  边 ie 到其他最近聚类中所有边的平均距离 

ip  边 ie 的几何中心点坐标 

kµ  第 k 个聚类 kC 的质心 

k
SS  当聚类数为 k 时，所有边的平均轮廓系数 

决策变量 
*K  最优的聚类数量(无人机数量) 

{ }*1 2, , ,
K

C C C  最终确定的 *K 个聚类(无人机巡逻子区域) 

3.2. 基于 K-Means 的图边聚类模型 

本模型旨在将复杂的路网划分问题转化为基于几何邻近性的聚类问题。为了利用标准 K-means 算法

处理图结构数据，首先需要将道路网络中的每条边映射为欧几里得空间中的特征点。设道路网络为图 
( ),G V E= ，其中V 为节点集合， { }1 2, , , nE e e e=  为边集合， n 为边的总数量。对于任意一条边 ie E∈ ，

假设其连接的两个端点(交叉口)分别为 u 和 v ，且端点的地理坐标分别为 ( ),u ux y 和 ( ),v vx y 。本模型提取

边 ie 的几何中心点作为其特征向量 ip ，计算公式如下： 

 ,
2 2

u v u v
i

x x y yp + + =  
 

 (1) 

通过上述映射，路网边集合 E 被转化为特征点集合 { }1 2, , , nP p p p=  。在此基础上，采用 K-means 算
法对集合 P 进行聚类，旨在形成内聚性高且空间紧凑的子区域。算法的目标是最小化聚类内的平方误差

和，即最小化所有特征点到其所属聚类质心的欧氏距离平方和。目标函数定义为： 

 2

1
min

i i

K

i i
k p C

J p µ
= ∈

= −∑ ∑  (2) 
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其中，K 为预设的聚类数量， kC 代表第 k 个聚类子集， kµ 是该聚类中所有特征点的质心。该优化过程通

过迭代更新，最终将整个路网边集合 E 划分为 k 个互不相交的子区域{ }1 2, , , KC C C ，确保每条边仅属于

一个特定的巡逻区域。 

3.3. 基于轮廓系数的最优分区数确定 

为了找到最佳的聚类数量 k ，本文采用轮廓系数进行客观评估，其定义为各边轮廓系数的平均值。

单个边 ie 的轮廓系数 ( )SS i 计算如下： 

 ( ) ( )max ,
i i

i i

b aSS i
a b
−

=  (3) 

其中， ia 表示边 ie 到同一聚类内所有其他边的平均距离，用于衡量该边与所属聚类的内聚性； ib 表示边

ie 到其他任意一个聚类中所有边平均距离的最小值，用于衡量该边与其他聚类的分离性。 ( )SS i 的取值范

围为 [ ]1,1− ，值越接近 1 表示聚类效果越好。 
整个数据集在聚类数为 K 时的平均轮廓系数

k
SS 为： 

 ( )
1

1 nk

i
SS SS i

n =

= ∑  (4) 

最终，最优聚类数 *K 通过最大化平均轮廓系数来确定： 

 * arg max ,1
k

kK SS k n= < ≤  (5) 

选择 *K 意味着在子区域的紧凑程度和区域间的分离程度之间取得了最佳平衡，从而以最合适的无人

机数量实现高效覆盖。 

3.4. 约束条件 

在模型求解过程中，需满足以下约束： 
1) 聚类完整性约束：道路网络中的每条边都必须被分配到一个且仅一个聚类中。 

 ( )
*

1
,

K

k i j
k

C E C C i j
=

= ∩ =∅ ≠


 (6) 

2) 聚类数量约束：聚类数量必须大于 1 且不超过边的总数，以确保多无人机协同的有效性。 

 *1 K n< ≤  (7) 

3) 空间连通性约束：标准 K-means 算法基于欧氏距离聚类，可能导致物理空间上不连通的道路被划

分至同一子区域。为解决此问题，本模型引入“连通性检测与修复”后处理机制。即在初步聚类完成后，

将聚类结果映射回图结构，检查每个子区域的连通分量。对于非连通的“孤岛”边集合，将其重新分配

至空间相邻且质心距离最近的连通主聚类中，从而强制保证最终生成的每个巡逻子区域 kC 在拓扑结构上

是连通子图。 

4. 算法设计 

基于第 3 章构建的模型，本节提出一种系统性的多无人机协同监控区域划分与资源部署算法。该算

法通过对道路网络进行结构分析，自动确定最优的巡逻区域划分、无人机数量及基站位置。 

4.1. 基于轮廓系数的分区优化与连通性修正算法 

本节提出一种结合轮廓系数评估与拓扑连通性修正的自适应分区算法，旨在确定无人机团队的最优
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规模及相应的巡逻区域划分。该算法主要包含最优聚类数搜索与空间连通性后处理两个核心阶段，具体

流程如算法 1 所示。 
第一阶段为基于轮廓系数的迭代寻优。首先，算法提取路网G 中所有边    e E∈ 的几何中心点，构建特

征数据集 P 。随后，在预设的无人机数量区间 [ ]max2, K 迭代搜索。对于每一个候选聚类数 k ，采用 K-means
算法对特征集 P 进行初步划分，并计算全局平均轮廓系数 kSS 。轮廓系数综合衡量了子区域内的紧凑度

与子区域间的分离度，其值越接近 1 表示划分效果越优。算法最终选 kSS 达到最大值时的 k 值作为最优无

人机部署数量 *K ，并获得相应的初始聚类集合{ }*1 2, , ,
K

C C C 。 
第二阶段为空间连通性后处理。考虑到 K-means 算法基于欧氏距离进行聚类，忽略了路网实际的拓

扑结构，可能导致部分生成的子区域在物理空间上不连通(即存在被地理特征隔断的“孤岛”路段)。为解

决此问题，算法引入连通性检测与修复机制： 
1) 子图构建与检测：对于初始划分的每个聚类 iC ，构建其在原路网中的导出子图，并利用广度优先

搜索算法检测其连通分量数量。 
2) 孤岛重分配：若某聚类包含多个连通分量，则保留包含边数最多的分量作为该区域的主体，将其

余较小的孤立连通分量标记为“孤岛”。 
3) 邻域归并：计算每个“孤岛”质心与所有相邻聚类主体质心的欧氏距离，将其重新分配至距离最

近且在空间上相邻的聚类中。 
通过上述后处理步骤，算法确保了最终输出的每个巡逻子区域在拓扑结构上均为连通子图，从而保

证了多无人机协同巡逻路径的可执行性与连续性(算法 1)。 
 
Algorithm 1. An optimal partitioning algorithm that considers spatial connectivity 
算法 1. 顾及空间连通性的最优分区算法 

Procedure FIND OPTIMAL CLUSTERS ( max,G K ) 

输入：道路网络子图 ( ),G E V ，最大候选聚类数 maxK  

输出：最优聚类数 *K ，最优聚类集合 { }*
*

1 2    , , ,
K

C C C=   

( )points EXTRACT_EDGE_CENTROIDSE G←  //提取所有边的中心点坐标 

[ ]←  //初始化一个空列表，用于存储平均轮廓系数 

for    2k =  to maxK  do //遍历可能的聚类数量 

{ } ( )1 points, , K-MEANS ,kC C E k←  //执行 K-means 聚类 

{ }( )1COMPUTE_SILHOUETTE_SCORE , ,
k

kSS C C←   //计算平均轮廓系数 

( ).append
k

S SS  //存储结果 

end for 

( )* INDEX OF max 1K ← +  //找到最大轮廓系数对应的 k 值 

{ }( )*K-MEANS ,init pointsC E K←  //生成初始分区方案 

*C ←执行连通性检测与修复 ( ), initG C  //空间连通性后处理 
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续表 

//1. 构建各子区域的导出子图并检测连通分量 

//2. 将非连通的孤立路段重分配至最近的主聚类 

return *K , *C  

end procedure 

 
该算法通过系统性的搜索与量化评估，确保了最终的分区方案在子区域结构紧凑性与区域间分离度

上达到最佳平衡。 

4.2. 资源部署策略 

在获得最优区域划分方案后，需要制定相应的资源部署策略。无人机部署采用一对一的分配原则，

即为每个最终确定的聚类分配一架专用无人机，从而将无人机数量确定为最优聚类数 K*。基站选址则根

据区域特征采用差异化策略：对于单聚类区域，基站设置在该区域的中心位置；对于包含多个聚类的区

域，通过计算各聚类中心的坐标平均值，将基站设置在与此均值最接近的顶点上。这种部署策略旨在优

化无人机的巡逻效率与能源消耗。 

5. 实验结果与分析 

为系统验证本文提出的多无人机协同覆盖优化方法的有效性，本章设计了严谨的实验方案。通过对

不同配置下的性能指标进行量化对比与深入分析，全面评估所提出方法在提升监控效率与优化资源配置

方面的性能表现。 

5.1. 实验设置 

5.1.1. 数据集与实验环境 
为全面验证算法在不同城市形态下的适应性，本文选取了基于 TAPASCologne 开源项目的真实城市

车辆移动数据集[11]作为实验基础。该数据集基于 SUMO 交通仿真器生成，能够精确反映复杂的城市路

网拓扑特征。为了定量描述实验环境，本文统计了各实验场景的关键拓扑参数，如表 2 所示。 
 
Table 2. Statistical topological parameters of experimental road networks 
表 2. 实验路网拓扑参数统计 

场景 路网特征描述 节点数 V 边数 E 路网总长度(km) 平均度 

场景 1 中等密度/规整 46 62 9.8 2.70 

场景 2 高密度/复杂 118 174 16.5 2.95 

场景 3 低密度/狭长 52 64 21.2 2.46 

 
场景 1 为中等密度规整路网，以方格状道路为主，交叉口分布均匀，代表城市中常规居住区路网形

态，用于测试算法在标准城市街区下的基准性能；场景 2 为高密度复杂路网，涵盖商业区多支路、环形

交叉路口及交通流量热点区域，模拟城市核心区路网特征，旨在评估算法在高负载任务与复杂连通环境

下的鲁棒性；场景 3 为低密度狭长型路网，沿城市主干道延伸且支线道路较少，对应城市近郊或交通廊

道型路网，用于验证算法在非均匀空间分布及长距离通勤限制下的覆盖效率。 

https://doi.org/10.12677/mos.2026.151024


左淑霞 
 

 

DOI: 10.12677/mos.2026.151024 266 建模与仿真 
 

5.1.2. 评估指标体系 
为全面衡量系统性能，本文建立了多维度评估指标体系。平均间隔时间反映系统对全路网的持续监

控能力，通过计算所有边在实验期间未被监控的平均时间间隔获得；最差间隔时间用于识别系统中的监

控薄弱环节，统计所有边中最长的监控间隔时间；覆盖时间衡量无人机团队的协同工作效率，定义为从

任务开始到所有边都被至少访问一次所需的时间；每边访问次数则评估监控强度，通过统计实验期间各

边被访问的平均次数计算。这四个指标从持续性、可靠性、效率性和强度四个维度完整刻画了监控系统

的性能表现。 

5.1.3. 对比方案设计 
为充分验证所提出方法的有效性，本文设计了三种配置方案进行对比实验。基准配置不采用任何聚

类分区策略，无人机在整个子图范围内进行协同巡逻，基站位置随机选择，该配置作为性能比较的基线。

MCC 配置采用基于轮廓系数的聚类分区策略，并将基站设置在各个聚类中心的平均值位置。SC 配置同

样采用聚类分区策略，但基站位置的选择策略不同，是将整个子图视为单个集群时计算得到的中心位置。

通过这三种配置的对比，可以清晰区分聚类分区策略和不同基站部署方案各自对系统性能的贡献。 

5.2. 实验结果分析 

5.2.1. 最优聚类数的确定与分析 
基于轮廓系数对不同聚类数 k 的分区质量进行量化评估，实验结果显示，三类场景的平均轮廓系数

曲线均呈现单峰特性，这一特征为最优聚类数的确定提供了客观量化依据(图 1)。 
 

 
Figure 1. The average silhouette coefficient plots for each of the three scenarios 
图 1. 三个场景中每个场景的平均轮廓系数图 

5.2.2. 聚类分区策略的有效性验证 
如表 3 所示，对比三类配置的核心性能指标，聚类分区策略(MCC 与 SC 配置)在所有场景中均展现

出显著的性能增益，其优势本质源于子区域划分对多无人机任务协同逻辑的优化。 
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Table 3. Performance indicators of multi-UAV patrols with and without swarming 
表 3. 多无人机在有无集群的情况下巡逻的性能指标 

(a) 场景 1 

 无人机数量 平均间隔 最差间隔 覆盖时间 每次访问次数 

基准配置 

3 11 47 12 14.1 

4 11 42 9 20 

5 11 42 11 23.3 

6 11 41 11 42.9 

MCC 配置 

3 4.9 28 15 15.6 

4 2.8 20 9.8 18.5 

5 2.93 16.3 7.2 23.5 

6 2.8 15.6 5.7 25.8 

SC 配置 

3 4.2 28.4 12.1 16.8 

4 5.7 18.5 9 15.6 

5 2.8 15.3 6.1 22.2 

6 3.75 15.6 5.7 25.5 

(b) 场景 2 

 无人机数量 覆盖时间 平均间隔 最差间隔 每次访问次数 

基准配置 

2 25.8 12.4 59 5.6 

6 20 12.4 56 5.6 

9 16.2 12.1 47.9 20.8 

10 15.6 14.5 44 24.9 

MCC 配置 

2 10 5.1 27.8 8.7 

6 5 2.11 15.6 22.5 

9 2.8 1.93 11.5 32.4 

10 2.8 1.87 10.9 42.9 

SC 配置 

2 9.68 5.75 25.8 11 

6 4 2.11 15.6 22.5 

9 2.52 1.87 10.5 32.2 

10 5 1.87 11.56 36.5 

(c) 场景 3 

 无人机数量 覆盖时间 平均间隔 最差间隔 每次访问次数 

基准配置 

2 17 10 43 11 

3 17.42 10 42.2 14.7 

4 17.5 11 44 18.8 

6 17.9 10 41.6 28.5 

9 17.1 10 41.8 42.9 
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续表 

MCC 配置 

2 12 6.4 30.7 10.5 

3 6.08 4.3 16.32 16.3 

4 5.6 3.7 14.5 17.5 

6 4.8 2.5 15.6 36.9 

9 3.75 2.19 14.2 57 

SC 配置 

2 11 6.4 41.6 12.1 

3 6.08 4.3 16.32 16.3 

4 5.79 3.9 15.5 17 

6 5 2.8 14.79 36.3 

9 3.9 2.8 14.5 57.8 

 
以场景 1 为例，当 K = 5 (最优聚类数)时，SC 配置的平均间隔时间从基准配置的 11 降至 2.8，降幅

达 74.5%；最差间隔时间从 42 降至 15.3，降幅 63.4%；覆盖时间从 11 缩短至 6.1，效率提升 44.5%。这

一数据差异的核心原因在于：基准配置缺乏分区约束，无人机在大范围路网内协同巡逻时，易出现任务

重叠与任务空缺的双重问题，即使增加无人机数量，也仅能小幅缩短覆盖时间，而平均间隔时间与最差

间隔时间几乎无改善。反观聚类分区策略，通过将路网划分为内聚性强的子区域，每架无人机的巡逻范

围被限定在特定子区域内，任务目标更聚焦，不仅避免了跨区域协同带来的调度延迟，还通过子区域负

载均衡(基于轮廓系数的分区确保各子区域边数量与总长度相近)，使每架无人机的工作强度趋于一致，从

根本上提升了系统的持续覆盖能力。 
场景 2 与场景 3 的实验结果进一步验证了聚类分区策略的普适性。场景 2 作为高密度复杂路网，最

优 K = 9 时，SC 配置的平均间隔时间从 12.1 降至 1.87，降幅 84.5%；最差间隔时间从 47.9 降至 10.5，降

幅 78.1%；每边访问次数从 20.8 提升至 32.2，监控强度显著增强，这一结果表明聚类分区可有效应对复

杂路网的多任务并行需求。场景 3 作为低密度狭长型路网，最优 K = 3 时，SC 配置的覆盖时间从 17.42
缩短至 6.08，降幅 65.1%；平均间隔时间从 10 降至 4.3，降幅 57.0%，证明即使在道路分布稀疏的场景

中，聚类分区仍能通过优化任务范围提升监控效率。 

5.2.3. 基站部署策略的对比研究 
如图 2 所示，将两种基站定位方案与无聚类场景的基准配置进行了比较。MCC 和 SC 方法的性能相

当，但就覆盖时间以及最差和平均空闲而言，SC 的总体性能更好。 
从机制上分析，这种性能差异源于基站部署逻辑的本质不同：SC 配置通过 K-means 算法(K = 1)计算

整个子图的几何中心，其位置选择基于路网整体拓扑特征，可确保各子区域无人机往返基站与巡逻区域

的通勤距离趋于均衡，有效降低因通勤时间过长导致的监控中断；而 MCC 配置依赖各子区域聚类中心

的均值位置，当聚类分布存在偏差，如场景 2 中部分子区域因路网密度高而聚类中心更集中时，基站位

置易向密集区域偏移，导致偏远子区域无人机的通勤距离增加，进而影响监控效率。这一发现为实际工

程应用中的基站选址提供了重要学术依据——在城市交通监控场景中，基于路网整体拓扑的基站部署方

案更能适应子区域分布的不确定性，提升系统整体协同性能。 
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(a) 场景 1 

    
(b) 场景 2                                       (c) 场景 3 

Figure 2. Performance comparison chart 
图 2. 性能比较图 

5.3. 实验结论 

综合上述实验结果与机制分析，可得出以下结论： 
首先，基于轮廓系数的边聚类分区策略能够通过优化多无人机任务分配逻辑，其本质是通过子区域

划分解决了传统无优化模式下的任务重叠与空缺问题，使每架无人机的工作负载更均衡、任务目标更聚

焦，进而实现平均间隔时间与最差间隔时间的大幅降低，以及覆盖时间的显著缩短。 
其次，最优聚类数的确定需紧密结合路网拓扑特征，轮廓系数作为客观量化指标，可有效避免主观

决策导致的分区过粗或过细问题，为不同密度、不同形态的路网提供个性化的分区方案，确保子区域内

聚性与区域间分离性的最佳平衡。 
再次，基于路网整体拓扑的基站部署策略(SC 配置)在协同效率与负载均衡方面优于基于聚类中心均

值的部署策略(MCC 配置)，其核心优势在于能够适应子区域分布的不确定性，降低无人机通勤距离的差

异，提升系统整体稳定性。 
最后，本文提出的方法可在降低无人机部署成本的同时实现监控性能的显著提升，具备良好的成本

效益与实际应用价值，为城市交通监控领域的多无人机协同系统设计提供了科学的理论依据与技术路径。 

6. 结论 

6.1. 研究总结 

本文针对城市交通监控的连续覆盖问题，提出了一种基于多无人机协同的覆盖优化方法。该方法通
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过边聚类将复杂路网划分为高效巡逻的子区域，并利用轮廓系数客观确定最优的无人机数量，从而在保

证监控性能的同时优化了部署成本。 
实验结果表明，相较于无聚类策略，该方法能显著提升系统性能，实现平均与最差空闲时间的大幅

降低，并有效缩短整体覆盖时间。这验证了所提方法能够以成本效益最高的方式，实现对大范围城市区

域的持续、高效监控，为智能交通系统提供了实用的解决方案。 

6.2. 未来展望 

本文仍存在若干可拓展方向。未来将在更多样化的路网环境中验证算法性能，重点关注高密度区域

和特殊地形的适应性。同时，将探索动态聚类算法，使系统能根据实时交通状况和无人机能量状态自适

应调整。此外，还将深入研究复杂环境因素对系统的影响，并通过实地测试推进技术实用化。这些工作

将进一步完善无人机交通监控系统，为智慧城市建设提供技术支持。 
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