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Abstract

Aiming at the problem of low computational efficiency caused by the large particle scale in Discrete
Element Method (DEM) simulations, as well as issues such as gradation imbalance and simulation
distortion induced by the uniform coarse-grain ratio scaling of the Constant Absolute Overlap (CAO)
coarse-graining model, this study applies the variable-ratio generalized coarse-graining model and
the CAO coarse-graining model to the simulation of vibratory compaction of quartz sand. With the
simulation results of the original gradation as a reference, comparative verification is conducted from
dimensions including particle pile morphology and particle distribution. In the study, different coarse-
grain ratio working conditions are set up to systematically analyze the simulation accuracy and ap-
plicable boundaries of the two models. The results show that the variable-ratio coarse-graining model
effectively avoids the problem of expanded gradation gap through differentiated coarse-grain ratio
allocation. It can accurately reproduce the compaction morphology and particle distribution law of
the original gradation under different coarse-grain ratio conditions, and has a wider scaling bound-
ary and stronger stability, which verifies the applicability of this model under vibratory compaction
conditions. In contrast, the CAO model is only suitable for scenarios with narrow coarse-grain ratios
and small particle size ranges. This study provides an efficient and reliable coarse-graining solution
for large-scale particle vibratory compaction simulations, and holds important practical signifi-
cance for improving the computational efficiency and accuracy of engineering simulations.
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Figure 1. Schematic diagram of the variable ratio generalized coarse-graining model: (a) Physical process of one large particle
in contact with N small particles, (b) Simplified model of N-to-1 contact, (c) Contact relationship between coarse-grained
particles with variable ratio scaling. Here, solid circles represent the original particles; hollow circles and the solid circles
inside them respectively represent the coarse-grained particles (CG particles) and their corresponding original particles. N
indicates the number of small particles; particle colors are used to distinguish particle types (i.e., the size of the original particles)
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Figure 2. Grading diagram. Among them, CAO 2, CAO 3, and CAO 4 respectively represent the CAO
models with coarse particle ratios of 2, 3, and 4; Variable Ratio 2, Variable Ratio 3, and Variable Ratio
4 respectively represent the variable ratio models with maximum coarse particle ratios of 2, 3, and 4
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Figure 3. Simulated snapshot of the original gradation
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Figure 4. Simulation snapshot of the CAO coarse-grained model with a coarse-grained ratio of 2
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Figure 5. Simulation snapshot of the CAO coarse-grained model with a coarse-grained ratio of 3
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Figure 6. Simulation snapshot of the CAO coarse-grained model with a coarse-grained ratio of 4
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Figure 7. Simulation snapshot of the variable-scale coarse-grain model with a maximum coarse-grain ratio of 2
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Figure 8. Simulation snapshot of the variable-scale coarse-grain model with a maximum coarse-grain ratio of 3
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Figure 9. Simulation snapshot of the variable-scale coarse-grain model with a maximum coarse-grain ratio of 4
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Figure 10. Average stack height error rate before oscillation. Among them, CAO 2, CAO 3, and CAO 4 respectively represent
the error rates of the CAO model with coarse-particle ratios of 2, 3, and 4. Variable scale 2, variable scale 3, and variable scale
4 respectively represent the error rates of the variable scale models with the maximum coarse-grain ratios of 2, 3, and 4

10. BHAMFHESIRER. Hh, CAO 2, CAO 3. CAO 4 HHIFRIERIEL A 2, 3. 4 B CAO IREURER;
TEEf 2, FEEG 3. LG 4 HAIRREAMEREE R 2. 3. 4 T HIRBNIRER

5

Bl 02
LI cA03
[ ] cao4 4.2
B 2
[ EERUE
L 24

0

Figure 11. Average stacking error rate after oscillation. Among them, CAO 2, CAO 3, and CAO 4 respectively represent the
error rates of the CAO model with coarse-particle ratios of 2, 3, and 4. Variable scale 2, variable scale 3, and variable scale 4
respectively represent the error rates of the variable scale models with the maximum coarse-grain ratios of 2, 3, and 4
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Figure 12. Comparison of the morphology between the CAO model with a coarse-particle ratio of 2 and the variable-scale
model with a maximum coarse-particle ratio of 2. Among them, the red semi-transparent model is the CAO model, and the
blue semi-transparent model is the variable-scale model
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Figure 13. Comparison of the morphology between the CAO model with a coarse-particle ratio of 3 and the variable-scale
model with a maximum coarse-particle ratio of 3. Among them, the red semi-transparent model is the CAO model, and the
blue semi-transparent model is the variable-scale model
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Figure 14. Comparison of the morphology between the CAO model with a coarse-particle ratio of 4 and the variable-scale
model with a maximum coarse-particle ratio of 4. Among them, the red semi-transparent model is the CAO model, and the
blue semi-transparent model is the variable-scale model
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Figure 15. Particle distribution map before oscillation
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Figure 16. Particle distribution map after oscillation
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